
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

11-21-2008

Design and Implementation of a Hard Real-Time
Telerobotic Control System Using Sensor-Based
Assist Functions
Eduardo J. Veras-Jorge
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd

Part of the American Studies Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Veras-Jorge, Eduardo J., "Design and Implementation of a Hard Real-Time Telerobotic Control System Using Sensor-Based Assist
Functions" (2008). Graduate Theses and Dissertations.
https://scholarcommons.usf.edu/etd/546

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

www.manaraa.com

Design and Implementation of a Hard Real-Time Telerobotic Control System Using

Sensor-Based Assist Functions

by

Eduardo J. Veras-Jorge

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Mechanical Engineering

College of Engineering

University of South Florida

Major Professor: Rajiv Dubey, Ph.D.

Kathryn J. De Laurentis, Ph.D.

Susana K. Lai-Yuen, Ph.D.

Craig Lusk, Ph.D.

Wilfrido Moreno, Ph.D.

Kandethody Ramachandran, Ph.D.

Date of Approval:

November 21, 2008

Keywords: computer vision, haptics, robotic control, scaled teleoperation, virtual fixtures

© Copyright 2008, Eduardo J. Veras

www.manaraa.com

Acknowledgments

 The author graciously acknowledges the invaluable assistance and support

provided by Dr Rajiv Dubey for trusting me in the first place and for helping me to

identify a research problem in rehabilitation robotics. His guidance and sharing of his

knowledge were instrumental during the course of my research. I would also like to

thank the rest of the members of my committee, Prof. Craig Lusk, Prof. Kandethody

Ramachandran, Dr. Kathryn De Laurentis, Prof. Susana Lai-Yuen, and Prof. Wilfrido

Moreno. They have all contributed by providing their feedback and by sharing their

experience in the form of invaluable comments for improving this document. Thanks to

lab mates and good friends Chris Colbert, Kathryn De Laurentis, Karan Khokar, Peter

Schrock, Ramya Swaminathan, Redwan Alqasemi, Stephanie Carey, and Stephanie

Stiber. I have had the opportunity to work with them and share memorable moments

during this project. Special thanks to Karan Khokar and Redwan Alqasemi for assisting

with experiments and testing of software. I also would like to express my gratitude to the

staff of the Center for Rehabilitation Engineering and Technology: Bill Calvin, Linda

Colon, Rosannah Parma, Stephen Sundarrao, and Vilma Fitzhenry and the ME

department staff: Shirley Tervort, Susan Britten, and Wes Frusher. Thanks to Johanna

Cedeno for her help with the statistical analysis. In a more personal level, I would like to

express my deepest gratitude to my family. Thanks to my mother, Lilliam, and brothers,

Hugo, Jose Alfonso, Jose Eduardo, and Jacque, who always have been so supportive of

my efforts. Last, and for most, thanks to God, for considering me one of his sons and for

showing me a way to become a better person every day.

www.manaraa.com

Dedication

To Auristela, my lovely wife, for her unconditional love, and for just finding the

appropriate boost to give when I really needed it. Also, I would like to dedicate this work

to my children, Adriana and Alfonso; I can only hope they will do much better than I had

ever dreamed in life.

www.manaraa.com

 i

Table Of Contents

List of Tables iv

List of Figures v

Abstract xi

Chapter 1. Introduction 1

1.1 Motivation 1

 1.2 Virtual and Haptic Feedback 2

1.3 Rehabilitation Robotics Applications 3

1.2 Dissertation Objectives 4

1.3 Dissertation Outline 5

Chapter 2. Background 7

2.1 Introduction 7

2.2 Teleoperation Robotics 8

2.3 Teleoperation Assistance 12

2.3.1 Position-Based Assistance Functions 12

2.3.2 Velocity Scaling Assistance Functions 13

2.3.3 Virtual Fixture Assistance Functions 15

2.4 Teleoperation in Real-Time 18

Chapter 3. Hard Real-Time Telerobotic Controller 25

3.1 Introduction 25

3.2 The Need for Real-Time Haptically Controlled Robotics 26

3.3 Telerobotic Computational Tasks 29

3.4 Overview of the Robot Arm Controller and Forward Kinematics Equations 30

3.5 General Nonlinear Robotic Model 37

3.6 Generic Architecture for a Real-Time Robotic Controller 43

3.7 Cartesian Trajectory Generation Thread 50

3.8 Resolved-Rate Thread 52

3.9 Sensory Information Thread 53

3.10 Summary 55

Chapter 4. Sensor-Based Assistance, Autonomous and Teleoperation Control 57

4.1 Introduction 57

4.2 Sensor-Based Telerobotic Control Theory 58

4.2.1 Autonomous Control Mode 58

4.2.2 Position-Based Teleoperation Control Mode 61

www.manaraa.com

 ii

4.2.3 Velocity-Based Teleoperation Control Mode 62

4.2.4 Scaled Teleoperation 64

4.2.5 Virtual Fixture-based Teleoperation 65

4.3 The Phantom Omni Haptic Interface 65

4.4 Joint and Cartesian Control through the Haptic Device 67

4.5 Telerobotic Control System 68

4.6 Indexing with the Haptic Device 70

4.7 Assistance Function (SAF) Concept 70

4.8 Summary 75

Chapter 5. Visual and Haptic Data for Motion Scaling

and Virtual Constraint Definition 76

5.1 Introduction 76

5.2 Spatial Domain Pre-Processing 77

5.3 Numerical Optimization Approach of the Camera Parameters 83

5.4 Inverse Perspective Mapping (IPM) 86

5.5 Edge Detection and Feature Extraction 88

5.6 Mapping to the Robot Arm Reference Frame 89

5.7 Summary 94

Chapter 6. Sensor-Based Assistance Function Calculations 96

6.1 Introduction 96

6.2 Generic Scheme for Motion-Dependent Force Feedback Calculation 96

6.3 Sensor-Based Assistance 99

6.4 Comments 106

6.5 Summary 106

Chapter 7. Experimental Methodology and Testbed

For Interactive Simulation Results 108

7.1 Introduction 108

7.2 Methodology for Experiments 109

7.3 Visual and Haptic Testbed to Control a 6 DoF Robot Arm 112

7.4 Haptic Interface and Cartesian Motion 116

7.5 Performance Measures 117

7.5.1 The Absolute Position Error (APE) 118

7.5.2 The Absolute Orientation Error (AOE) 119

7.6 Summary 124

Chapter 8. Virtual Reality Simulation Testing 125

8.1 Introduction 125

8.2 Virtual Reality Simulation of the Puma 560 Manipulator 126

8.3 Control of the VR Model of the Puma 560 Manipulator 127

8.4 VR Linear Trajectory Simulation 130

8.5 Haptic Feedback and Assistive Functions in Simulation 133

8.6 Comments on the Haptic and VR Model Simulation 135

8.7 Communication Protocol 135

www.manaraa.com

 iii

8.8 Comments on the Communication Protocol in the Simulation Program 136

8.9 Summary 137

Chapter 9. Results and Discussion 138

9.1 Introduction 138

9.2 Interactive Simulation Results 138

9.2.1 Position-Based Control Interactive Simulation Results 143

 9.2.2 Velocity-Based Control Interactive Simulation Results 154

9.3 Virtual Reality Simulation Results 169

9.4 Summary 174

Chapter 10. Conclusions and Recommendations 175

10.1 Overview 175

10.2 General Discussion 178

10.3 Recommendations 179

Chapter 11. Future Work 181

11.1 Introduction 181

 11.2 Combined Mobility and Manipulation with Time-dependant

 Sensory Calibration Functions in Real-Time 181

11.3 Autonomous Navigation 182

11.4 Remote Assistance 183

References 184

Bibliography 191

Appendices 194

 Appendix A: Puma 560 Homogeneous Transformations 195

 Appendix B: Equivalent Single Angle-Axis Representation 197

 Appendix C: MatLab Script for the Symbolic Jacobian Determination 201

 Appendix D: Singularity-Robust (SR) Inverse 202

 Appendix E: Angular Velocities Components of the End-Effector 203

 Appendix F: Specifications for the PHANTOM Omni Haptic Device 206

 Appendix G: Custom Made Sick DT60 Data Acquisition Module 207

About the Author End Page

www.manaraa.com

 iv

List Of Tables

Table 3.1 DH Parameters of the Puma 560 Robot Arm [51] 33

Table 3.2 Link Mass and Center of Gravity Locations [51] 42

Table 5.1 Extrinsic Camera Parameters ( cR ,  cT) and End-effector Rotation

and Translation Matrices ( R ,  T) 93

Table 6.1 Constrained Directions in a Motion Task 104

Table 9.1 Completion Time (in seconds) for the Pick-up-a-cup Task 140

Table 9.2 Completion Time Descriptive Statistics 141

Table F.1 Specifications for the Omni Haptic Device 206

www.manaraa.com

 v

List Of Figures

Figure 2.1 (a) End-effector Constrained to Motion on a Linear Path. (b) End-

effector Constrained to Motion on a Plane 13

Figure 2.2 Scaling Factor Functions [26] 14

Figure 2.3 Scaling Factor Based on Laser Range Finder Reading [31] 15

Figure 2.4 Cross Alignment Task in [31] 15

Figure 2.5 Force Clues Generated by Position and Approach Fixtures (Left).

Fixtures Restricting Degrees of Freedom (Right) [36] 17

Figure 2.6 Lenard-Jones Potential Functions 18

Figure 3.1 Coordinate Frame Assignments to Links of Puma 560 [51] 32

Figure 3.2 DH-Based Intermediate Transformations [51] 34

Figure 3.3 Simplified Resolved-Rate Algorithm Block Diagram 38

Figure 3.4 Multithreaded Robot Arm Controller Architecture 45

Figure 3.5 Ready/Blocked States, Adapted from [50] 47

Figure 3.6 Block Diagram of the System Architecture 49

Figure 3.7 Cartesian to Joint Space Conversion in the Robotic Workspace 53

Figure 4.1 Conceptual Representation of Autonomous Control Mode 59

Figure 4.2 Phantom Omni Haptic Device 67

Figure 4.3 Phantom Omni Reference Configurations 68

Figure 4.4 Telerobotic System Block Diagram 69

Figure 4.5 Representation of the Sensor-Based Assistance Function 72

www.manaraa.com

 vi

Figure 4.6 A Set of Line of Sight Vectors (in Red) Placed Closed to the

Centroid of the Region of Interest (ROI) 73

Figure 4.7 Line of Sight Using Single Axis Rotation [60] 74

Figure 5.1 Camera Model Geometry 79

Figure 5.2 Graphical User Interface with Chessboard Calibration Pattern 81

Figure 5.3 Chessboard Calibration Pattern at a Different Pose of the Robot Arm 81

Figure 5.4 Calibration Pattern in the Camera-Mounted Field View 82

Figure 5.5 Distorted and Undistorted Sensor and Image Coordinates 82

Figure 5.6 World Centered Camera Calibration using Bouguet„s Toolbox [63] 85

Figure 5.7 Camera Centered Calibration using Bouguet„s Toolbox [63] 85

Figure 5.8 Illustration of the Error between Predicted and Observed Image Points 86

Figure 5.9 Camera and Image Planes Geometrical Relationships 87

Figure 5.10 Relationships between the Different Coordinate Frames [63] 90

Figure 6.1 Translational Distance, dij, Used for Feedback Force Control Law 97

Figure 6.2 Desired Path and "Noisy" Trajectory Input 105

Figure 7.1 „Pick and Place‟ Task Experimental Setup 110

Figure 7.2 Virtual Environment for Teleoperation of the PUMA Manipulator 113

Figure 7.3 Sensor Suite Devices 114

Figure 7.4 Camera and the Sick DT60 Laser Range Finder Mounted at the

Puma‟s End Effector 114

Figure 7.5 Results of the Segmentation and Feature Extraction Process 115

Figure 7.6 Virtual Environment and 3D Constraint Plane for Haptic Control 116

Figure 7.7 Absolute Position Error 119

Figure 7.8 Absolute Orientation Error 121

www.manaraa.com

 vii

Figure 8.1 Virtual Reality Model of the Puma 560 127

Figure 8.2 Control Panel for Joint and Cartesian Space VR Simulations 128

Figure 8.3 Haptic-VR Puma 560 Graphical User Interface 129

Figure 8.4 Required Joint Angles for the Predefined Linear Trajectory Path 132

Figure 8.5 End-Effector Displacements from Initial to Goal Position 132

Figure 8.6 Bezier Curve Trajectory and Haptically Rendered Cube 133

Figure 8.7 Experimental Data of Forces Resulting from a Typical Interaction 134

Figure 9.1 Boxplot of Autonomous (C1), Position-Based Regular Teleoperation (C2),

Position-Based Scaled Teleoperation (C3), Position-Based Virtual Fixture

(C4), Velocity-Based Regular Teleoperation (C5), Velocity-Based Scaled

Teleoperation (C6), and Velocity-Based Virtual Fixture 142

Figure 9.2 Position-Based Regular Teleoperation vs. Scaled Teleoperation 144

Figure 9.3 Position-Based Regular Teleoperation vs. Autonomous Control 145

Figure 9.4 Position-Based Regular Teleoperation vs. Virtual Fixture Teleoperation 145

Figure 9.5 Position-Based Virtual Fixture Teleoperation vs. Autonomous Control 146

Figure 9.6 Position-Based Scaled Teleoperation vs. Autonomous Control 146

Figure 9.7 Position-Based Scaled Teleoperation vs. Virtual Fixture Teleoperation 147

Figure 9.8 Absolute Position Error in Position-Based Regular vs. Scaled

Teleoperation 147

Figure 9.9 Absolute Position Error in Position-Based Regular Teleoperation vs.

Autonomous Control 148

Figure 9.10 Absolute Position Error in Position-Based Regular vs. Virtual Fixture

 Teleoperation 148

 Figure 9.11 Absolute Position Error in Position-Based Virtual Fixture Teleoperation

 vs. Autonomous Control 149

Figure 9.12 Absolute Position Error in Position-Based Scaled Teleoperation

vs. Autonomous Control 149

www.manaraa.com

 viii

Figure 9.13 Absolute Position Error in Position-Based Scaled vs.Virtual Fixture

 Teleoperation 150

Figure 9.14 Absolute Orientation Error in Position-Based Regular vs. Scaled

 Teleoperation 150

Figure 9.15 Absolute Orientation Error in Position-Based Scaled-Teleoperation vs.

 Autonomous Control 151

 Figure 9.16 Absolute Orientation Error in Position-Based Regular Teleoperation vs.

 Autonomous Control 151

Figure 9.17 Absolute Orientation Error in Position-Based Regular vs. Virtual Fixture

 Teleoperation 152

Figure 9.18 Absolute Orientation Error in Position-Based Virtual Fixture

 Teleoperation vs. Autonomous Control 152

Figure 9.19 Absolute Orientation Error in Position-Based Scaled Teleoperation vs.

 Autonomous Control 153

Figure 9.20 Absolute Orientation Error in Position-Based Scaled vs. Virtual Fixture

 Teleoperation 153

Figure 9.21 Velocity-Based Regular Teleoperation vs. Scaled Teleoperation 155

Figure 9.22 Velocity-Based Regular Teleoperation vs. Autonomous Control 156

Figure 9.23 Velocity-Based Regular Teleoperation vs. Virtual Fixture Teleoperation 156

Figure 9.24 Velocity-Based Virtual Fixture Teleoperation vs. Autonomous Control 157

Figure 9.25 Velocity-Based Scaled Teleoperation vs. Autonomous Control 157

Figure 9.26 Velocity-Based Scaled Teleoperation vs. Virtual Fixture Teleoperation 158

 Figure 9.27 Absolute Position Error in Velocity-Based Regular vs.

Scaled Teleoperation 158

 Figure 9.28 Absolute Position Error in Velocity-Based Regular Teleoperation vs.

 Autonomous Control 159

 Figure 9.29 Absolute Position Error in Velocity-Based Regular vs. Virtual Fixture

 Teleoperation 159

www.manaraa.com

 ix

 Figure 9.30 Absolute Position Error in Velocity-Based Virtual Fixture

 Teleoperation vs. Autonomous Control 160

Figure 9.31 Absolute Position Error in Velocity-Based Scaled Teleoperation vs.

 Autonomous Control 160

Figure 9.32 Absolute Position Error in Velocity-Based Scaled vs. Virtual Fixture

 Teleoperation 161

Figure 9.33 Absolute Orientation Error in Velocity-Based Regular vs. Scaled

 Teleoperation 161

Figure 9.34 Absolute Orientation Error in Velocity-Based Scaled-Teleoperation vs.

 Autonomous Control 162

Figure 9.35 Absolute Orientation Error in Velocity-Based Regular Teleoperation vs.

 Autonomous Control 162

Figure 9.36 Absolute Orientation Error in Velocity-Based Regular vs. Virtual Fixture

 Teleoperation 163

Figure 9.37 Absolute Orientation Error in Velocity-Based Virtual Fixture

 Teleoperation vs. Autonomous Control 163

Figure 9.38 Absolute Orientation Error in Velocity-Based Scaled Teleoperation vs.

 Autonomous Control 164

Figure 9.39 Absolute Orientation Error in Velocity-Based Scaled vs. Virtual Fixture

 Teleoperation 164

Figure 9.40 APE for Force, Position-Based Regular and Scaled Teleoperation 166

Figure 9.41 AOE for Force, Position-Based Regular and Scaled Teleoperation 166

Figure 9.42 APE for Teleoperation without Assistance, Motion-based Scaling,

 Motion-based Virtual Fixture and Force-based Virtual Fixture 167

Figure 9.43 AOE for Teleoperation without Assistance, Motion-based Scaling,

 Motion-based Virtual Fixture and Force-based Virtual Fixture 167

Figure 9.44 APE for Autonomous, Velocity-Based Scaling, Velocity-Based

 Virtual Fixture and Force-based Virtual Fixture 168

Figure 9.45 AOE for Autonomous, Velocity-Based Scaling, Velocity-Based

 Virtual Fixture and Force-based Virtual Fixture 168

www.manaraa.com

 x

Figure 9.46 Position Results of Circular Path in Cartesian Space 170

Figure 9.47 Robot Position Tracking of the Circular Path in the X-Y Plane 170

Figure 9.48 Haptic Position Tracking of the Circular Path in the X-Y Plane 171

Figure 9.49 Typical Assistive Feedback Force Experienced by the User 172

Figure 9.50 Typical Results of the Moving Average Filter Implementation 173

Figure E.1 Definition of the Euler Angles 203

Figure G.1 Custom-made ADC Module for the DT60 Sick Laser Sensor 207

www.manaraa.com

 xi

Design and Implementation of a Hard Real-Time Telerobotic Control System Using

Sensor-Based Assist Functions

Eduardo J. Veras

Abstract

 This dissertation presents a novel concept of a hard real-time telerobotic control

system using sensory-based assistive functions combining autonomous control mode,

force and motion-based virtual fixtures, and scaled teleoperation. The system has been

implemented as a PC-based multithreaded, real-time controller with a haptic user

interface and a 6-DoF slave manipulator. A telerobotic system is a system that allows a

human to control a manipulator remotely and the human control is combined with

computer control. A telerobotic control system with sensor-based assistance capabilities

enables the user to make high-level decisions, such as target object selection, and it

enables the system to generate trajectories and virtual constraints to be used for

autonomous motion or scaled teleoperation. The design and realization of a telerobotic

system with the capabilities of sensing and manipulating objects with haptic feedback,

either real or virtual, require utilization of sensor-based assist functions through an

efficient real-time control scheme. This dissertation addresses the problem of integrating

sensory information and the calculation of sensor-based assist functions (SAF's) in hard

real-time using PC-based resources. The SAF‟s calculations are based on information

from a laser range finder, with additional visual feedback from a camera, and haptic

measurements for motion assistance and scaling during the approach to a target and while

www.manaraa.com

 xii

following a desired path. This research compares the performance of the autonomous

control mode, force and motion-based virtual fixtures, and scaled teleoperation. The

results show that a versatile PC-based real-time telerobotic platform adaptable to a wide

range of users and tasks is achievable. A key aspect is the real-time operation and

performance with multithreaded software architecture. This platform can be used for

several applications in areas such as rehabilitation engineering and clinical research,

surgery, defense, and assistive technology solutions.

www.manaraa.com

 1

Chapter 1

Introduction

1.1. Motivation

The practicalities of creating a telerobotic control system to provide assistance for

a wide community of users impose computational constraints in the realization of such

system. On one hand, the external assistance (scaling, virtual fixture or haptic force

feedback) is integrated with optical sensory information for computing the kind of

assistance to be provided. On the other hand, the use of supervisory control i.e. human-in-

the-loop for physical control of the robot arm presents the possibility of introducing

instability during task execution if the proper control action is delayed or the update rates

are not consistent. It is desired to integrate a supervisory control (human-in-the-loop), in

which the human is in control, and at times, might switch to autonomous control mode,

scaling or virtual fixture teleoperation modes, in an accurate and deterministic fashion,

for enabling stable control of the teleoperation while allowing sensor-based motion

guidance.

The development of a hard real-time telerobotic controller with haptic and

sensory integration requires that the generated assist functions are fully integrated in the

control system. The implementation of hard real-time control algorithms is a

fundamental step for the development of sensor-based assistive technology in such areas

as rehabilitation and related training, surgery, defense, and assistive technology

applications. During the user's interaction with real and virtual objects the haptic

www.manaraa.com

 2

response needs to be in real-time, allowing operation in a complex environment and

providing user motion assistance during task execution. In this context, hard real-time

means that all the timing constraints of the system are met every time. Besides the

autonomous operation mode, others operations are implemented in position and velocity

control modes by the implementation of regular, scaled, and virtual fixture teleoperation

modes. In any of those control modes, the stability and predictability of the telerobotic

system response depends on strict timing requirements. In order to satisfy the response

time constraints for telerobotic system with sensor-based assistance, a flexible real-time

and a multithreading approach are needed. The PC-based multithreaded architecture

allows designing and implementing telerobotic tasks with additional capabilities for

assistance and haptic manipulation of target objects.

1.2 Visual and Haptic Feedback

The integration of visual and haptic information is particularly difficult because of

the different nature of the sensory signals. On one hand, the human brain can easily

interpret continuous motion from visual signals being updated from 24-30 frames per

second. On the other hand, the human sense of touch is much more demanding in terms

of consistent timing and update rates. It is known that in order to generate a realistic

sensation of touch the update rate must be at least 1000 Hz consistently to have rigid

body sensations in the user‟s hands [1, 2]. A haptic interface such as the Phantom Omni

requires a servo loop running between 1000-2000 Hz to transmit the sensation of a hard

surface to the user‟s hands through its actuators. So, an additional constraint is the

definition of the limits of the achievable stiffness for stable control of the haptic interface

www.manaraa.com

 3

[3]. The restrictions discussed above are very significant in telerobotic applications

which require continuous control of the robot arm configurations (position and

orientation) in autonomous or teleoperation modes. The design and implementation of a

PC-based platform for sensor-assisted telerobotic system would provide a platform for

the realization of a hard real-time teleoperation with a haptic interface by combining the

desirable properties of autonomous and teleoperation control systems. Since PCs are

ubiquitous, this platform can be more widely available and not exclusive to researchers or

those who have access to major computer power.

1.3 Rehabilitation Robotics Applications

This platform can be used for the implementation and execution of different

teleoperation tasks. The research environment in which it is realized is primarily

concerned about the development of new technology or modifications to existing

technology. This implementation would assist persons with disabilities to enhance their

mobility and manipulation using robotic systems. This field is known as Rehabilitation

Robotics. Rehabilitation robotics is a term associated with the use of robotic technology

to assist persons with disabilities to perform tasks they are unable to accomplish, or have

great difficulty accomplishing, without external assist methods to guide the user's

interactions. Within this context, the experiments conducted to validate the system are

related to task completion of Activities of Daily Living (ADL) such as pick-up-a-cup.

Other ADL‟s like opening-a-door, flipping-a-switch, and opening-a-faucet can be

performed using the system. The testing of the system is conducted on healthy people

performing a “pick-and-place” task, which is a common activity of daily living (ADL)

www.manaraa.com

 4

task. Three people are trained to use the Phantom Omni interface and to teleoperate the

PUMA manipulator. The actual hardware used for performing the experiments include a

6-DoF PUMA 560 manipulator, a Phantom Omni haptic interface and the sensory suite

consisting of a CCD camera, a Sick DT60 laser range finder and the PUMA encoders.

The performance indicators are defined in terms of the "Absolute Position Error" (APE),

the "Absolute Orientation Error" (AOE) indicators, and the task-completion time which

are calculated using the recorded data sets for each experiment.

1.4 Dissertation Objectives

 The major objectives of this dissertation are:

1. To begin the development of a PC-based hard real-time controller for a sensor-

assisted telerobotic system with a haptic user interface and a 6-DoF slave

manipulator.

2. To design a framework that can be useful for rehabilitation engineering, surgery,

defense, and assistive technology applications.

3. The integration of visual and haptic feedback to assist the user‟s motion for

autonomous, and teleoperated manipulation of target objects.

4. To implement real-time sensor-based assist functions for user‟s motion scaling.

5. To provide visual feedback combined with scaled teleoperation and virtual

fixtures or constraints definitions to guide the user interactions while

manipulating virtual and real objects.

www.manaraa.com

 5

6. To implement data structures and communication protocols that allows handling

interactive simulations, haptic interactions, optical sensors, and robotic

manipulations in real-time using a PC-based platform.

7. To develop a virtual reality model to simulate the telerobotic system in purely

robotic mode and a haptic integrated mode for conceptual testing of the control

algorithms.

8. To develop a control strategy based on a "closed form" solution for Puma-like

manipulators and a "Jacobian-based" control strategy that is expandable to control

redundant robot arms for which exact solutions are not available.

1.5 Dissertation Outline

 This dissertation comprises eleven (11) chapters; each one deals with a major

topic related to the development of the PC-based hard real-time telerobotic control

system using sensory-based assist functions and the combination of autonomous control

mode, force-based and motion-based virtual fixtures, and scaled teleoperation. Chapter 1

discusses the motivation for development of the system as well as the need for hard real-

time telerobotics control combining autonomous and teleoperation control. Chapter 2

gives a background on previous work in the field of robotic teleoperation and assistance.

The concept of real-time control and multithreading architecture of the teleoperation

tasks is outlined in Chapter 3. Chapter 4 contains the basis of sensor-based telerobotic

control implementation using position-based and velocity-based control modes. Chapter

5 describes the mapping of the sensors reference frames and the robot arm reference

frame required for driving the robot arm using teleoperation with human-in-the-loop and

www.manaraa.com

 6

autonomous mode. Chapter 6 describes the sensor-based assistance functions for motion-

dependent feedback. Chapter 7 explains the experimental methodology for performing

the experiments and a definition of the performance measures utilized. Chapter 8

describes the virtual reality simulations developed for testing and debugging of the some

of the algorithms implemented for the telerobotic and haptic system interfacing. Chapter

9 outlines the experiments conducted to show the control of the physical system and

discussion of the results. Chapter 10 concludes the dissertation work with

recommendations, and suggestions for future work are outlined in Chapter 11.

www.manaraa.com

 7

Chapter 2

Background

2.1 Introduction

Teleoperation tasks executed with the assistance of a haptic interface controller

require controlling the position and orientation of a multiple degrees of freedom

manipulator. Multiple joints of the manipulator are moved in a continuous way in order

to obtain a particular configuration of its end-effector. The required tasks for the haptic

interface, in general, are to follow a prescribed path, to provide force reflection through

the device actuators, impedance simulation using simple mathematical models such as

spring-type forces, and obstacle avoidance [4] [5]. These tasks are implemented with a

human-machine interface which requires the user to be always-in-the-loop (supervisory

control). In this work, a combination of supervisory control and autonomous control

modes are implemented which requires the integration of haptic interfacing techniques

with sensor-based assist functions (SAF's) and stable transitioning between control

modes. The purpose is to reduce the burden of the user by eliminating the requirement of

the user being "always-in-the-loop" and to provide assistance to guide the user using

scaling and virtual fixtures. The concept of human-machine interactions combined with

the concept of extending user‟s manipulation capabilities has been the topic of intensive

research [6] [7] [8] [9]. The integration of sensory information to assist the user‟s motion

by the generation of scaling and virtual constraints demands a consistent and stable

timing response. The need for predictable performance is a key factor in the ability of a

www.manaraa.com

 8

hard real-time system to meet the application's response-time requirements for such

applications. This chapter describes previous work done in the teleoperation and

assistance areas. Also a summary containing the differential features of the system

described in this dissertation is presented at the end of the chapter.

2.2 Teleoperation Robotics

 Teleoperation refers to the concept of extending a person‟s sensing and

manipulation capability to a remote location [10]. It was first described by Ray Goertz

who designed mechanisms such as mechanical pantograph devices to allow radioactive

materials to be handled from a safe distance. Even though it was not a robotic

application, it introduced a way for expanding research work in this direction. As

teleoperation technology developed, the mechanical linkages were replaced by electrical

servos and cameras replaced direct viewing, allowing the operator to be located

arbitrarily far away. A more detailed description of several teleoperation types of systems

and concepts are defined in the area of remote manipulation technology in [10].

 The basics of computer-aided teleoperation technology were established around

1965-70 when robotics applications were implemented with the aim of increasing

dexterity and manipulation [11]. In the early stages of the development of teleoperation

technology, the primary applications appear in the area of nuclear waste handling and

decommissioning, handling toxic chemicals and radioactive materials. The human

operators were provided with visual aid through video displays, and operate remotely

located slave robot via a hand controller, but not assistance was provided to them to

effectively complete the task. The idea of supervisory control (which combines human

www.manaraa.com

 9

and computer control) became apparent when researchers started to question how to

teleoperate vehicles on the moon through the unavoidable time delay of three tenths of a

second for the radio signal round trip to the Moon [10, 12, 13]. Early applications of

teleoperation in space were basically implementing time delays in the control system

where a human was remotely controlling a vehicle without force feedback or motion

assistance. The time delays still continue to be a problem in space teleoperation for

exploration.

 In 1985, another area of research was developed to find ways to remotely operate

underwater vehicles (RUV's). At that time, a RUV named Jason was used for exploring

the sunken Titanic cruise. The control system of the Jason was designed by Yoerger [14]

and it was tele-operated from the ARGO towed imaging platform from the surface. This

system integrated a vision system to assist the researchers from surface during the

underwater exploratory task. Nowadays, the underwater exploration system is commonly

known as the ARGO/JASON system [15].

 The term teleoperation typically refers to systems in which the human operator

directly and continuously controls the remote manipulator or telerobot. In these systems,

the kinematic chain manipulated by the operator is referred to as the “master”, while the

remote manipulator is referred to as the “slave”. However, it is also used to define

different levels of “autonomy”. From this point of view, a “telerobot” is classified into

two types [16]:

1. Tele-autonomy: refers to the combination of teleoperation and autonomous

robotic control. In some cases, a unilateral controller is used where there is no

feedback information from slave to master or from master to human.

www.manaraa.com

 10

2. Tele-collaboration: means that all operations are controlled by the human-

machine interface, usually in the form of force reflection.

 A teleoperation control system can be unilateral or bilateral depending on the data

flow. In the case of a unilateral controller, the robot arm is operated as an open-loop

system. If the master and the slave are physically separated, there may be a video

feedback of the slave executing a task or even no video if the master and slave are in

operator‟s viewing area. On the other hand, bilateral control provides force feedback to

the teleoperator, thus forming a “kinesthetic” or “tele-presence” system [17, 18, 19]. In

this case, human decisions are merged with the computer generated assistance to allow

for complex forms of automatic control. The control system adds velocity/force inputs to

those from the master in the impedance-controlled formulation to assist the motion of the

manipulator. Bilateral impedance control allows force reflection to be provided to the

operator during task execution [10, 20, 21]. In [18] Dubey et al proposed the variable

impedance method where the impedance parameters are adapted to variable

circumstances thus overcoming the conflict problem of choosing desired dynamics

parameters. This controller is primarily used in tasks requiring contact, such as needle

inserting into tissue or surface exploration. Teleoperation system design usually takes

operation accuracy into account, not the convenience and simplification of the operation.

With the improvement of the controller architecture and assistance attempt [22], the task

performance of telerobotic system in rehabilitation engineering is still not satisfactory

[23, 24, 25]. As explained in [26], for a simple “go get a cup and put it on a pad” task, it

takes the operator an average of 50 seconds, mostly due to indexing the master once it

reaches its workspace limit and tuning the gripper to grasp the target. Furthermore, the

www.manaraa.com

 11

performance largely depends on the operator's familiarity with the system. In most cases,

using a robot as a teleoperated device to complete a task is much harder than using

human arm and hand. It can soon become very exhausting, especially if it has to perform

repeated tasks such as feeding, even with some assistance. Many researchers tried to

improve the operation accuracy, reduce execution time and relieve the operator's mental

labor through adding artificial intelligence (AI). Kawamura et al [27] looked at how far

rehabilitation robots had come in possessing abilities that relieve the user from the mental

burden of controlling the robot. This AI-based system contains modules for a voice-

activated user interface which is capable to interpret fuzzy commands such as "move

closer", "go slower" or "move a little bit faster". These "fuzzy terms" can be recorded

through a macro action builder (similar to a script) which enables the user to specify a set

of commands to perform a task. The macros can be replayed later as a high-level action

commanded by the user. As described in [27], the system has the capability to plan the

actions to take in order to achieve a goal by learning the preconditions and effects of

those actions obtained through the macro builder interface. The utilization of sensors in

intelligent telerobotic systems, such as vision-based assistance, has improved the

operation of aligning the end effector with the target [28, 29] where the visual

information is used as part of the user interface in the form of visual cues for guiding tool

in order to reach a goal. This dissertation extends the utilization of sensors to the

calculation of the assist functions to guide the user while following a trajectory as well as

to align the tool (a Barrett hand) with the target.

www.manaraa.com

 12

2.3 Teleoperation Assistance

 In a telerobotic system, a human operator controls the movements by sending

commands or signals to the robot. In the last decade, developments in computer and

communication technology have enabled the integration of the teleoperation robotics

(telerobotics), sensory information, and haptic interfaces in such areas as rehabilitation,

training, surgery, research, device testing, and assistive technologies development. These

developments have allowed further development of the assistance algorithms to map the

master commands to the slave in a way that scales up or down depending on the task and

environment information (the scaling factors vary accordingly).

The assistance function concept consists of the generalization of position and

velocity mappings between master and slave manipulators of a teleoperation system. It

can be classified as regulation of position, velocity and contact forces. All of these

assistance strategies are accomplished by modification of the control law parameters of

simple mathematical models of spring-type and damping-type forces. A simple form of

position assistance is scaling, in which the slave workspace is enlarged or reduced as

compared to the master workspace. The velocity assistance is commonly used in

approaching target and obstacle avoidance. In both cases, the velocity scaling varies

according to whether motion in that particular direction is serving to further

accomplishing the desired effect of the motion.

2.3.1 Position-Based Assistance Functions

 In these functions, the motion of the manipulator is constrained to lie along a

given line or in a 2D plane. Figures (2.1a) and (2.1b) illustrate the situation of the linear

www.manaraa.com

 13

and planar constraint definitions, respectively. A detailed explanation of the position-

based assist functions can be found in [30]. In these particular functions, the force

feedback is transferred to the user through the haptic device itself. This way the haptic is

used as the actuation device to generate the force reflection as well as a positional sensor

to measure the relative position between a trajectory point and the "tip" of the haptic

device. This information is then compared with the external sensory information to

correct for possible deviations from the intended trajectory.

Figure 2.1 (a) End-effector Constrained to Motion on a Linear Path (b) End-effector

Constrained to Motion on a Plane

2.3.2 Velocity Scaling Assistance Functions

 In these functions, the level of assistance is based on velocity scaling according to

whether the motion improves in the direction intended. In the approaching assistance

mode, the velocity is scaled up (in free space) if the motion reduces the distance between

the current and goal positions of the robot arm. Otherwise, the velocity is scaled down.

End-effector

z  EEE zyx ,,

G

Goal point

 
ggg zyx ,,

Constraint

line

End-effector

Goal point

x
z

y

 
ggg zyx ,, G

 EEE zyx ,,

Constraint

plane

(a) (b)

www.manaraa.com

 14

Figure 2.2 shows scaling factors used for velocities scaling from previous work done in

the Rehabilitation Robotic Lab [30].

Figure 2.2 Scaling Factor Functions [26]

 From this figure it can be observed that the change of the scaling factor depends

on the proximity to the goal and the direction of motion. This same approach was used

by Everett, who designed a vision-based mapping to align the end effector of the slave

manipulator with a cross object [28, 31].

 This is similar to what occurs using a Laser Range Finder readings and a vision

system. Figure 2.3 shows how a velocity scaling factor varies based on the distance

reading when the end-effector is approaching a wall. Using a vision system, the

velocities that reduce the alignment error are scaled up and the ones that increase the

alignment error are scaled down (Figure 2.4).

Goal 2 Goal 1

Max Workspace
Max Workspace

Operation Range

Operation Range

Scale Factor

Scale Factor Goal 1
Max Workspace

Towards Goal 1

From Goal 1 to Goal 2

0

1

2

0

1

2

www.manaraa.com

 15

Figure 2.3 Scaling Factor Based on Laser Range Finder Reading [31]

Figure 2.4 Cross Alignment Task Adapted from [31]

2.3.3 Virtual Fixture Assistance Functions

 Another form of assistance used in tele-collaborative system is called “virtual

fixtures” where the function parameters are time invariant and only vary according to

spatial parameters. A canonical definition of virtual fixtures can be found in [32], as

“abstract precepts overlaid on top of the reflected sensory feedback from a remote

environment such that a natural and predictable relation exists between an operator‟s

Image Plane

(Ox,Oy)

(observed point)

S

I

(dx,dy)

(desired point)

E

C

Ev

y

x
x

y

yI

xI



Vxy

projected

from Ev

www.manaraa.com

 16

kinesthetic activities (efference) and the subsequent changes in the sensations presented

(afference)”. As an example, a virtual 3D wall can be defined as a “fixture” to assist in

linear trajectory following by creating a stop constraint to prevent a collision with a

desktop. In teleoperation, a virtual fixture can be defined as a computed-generated

spatial constraint that imposes positional or force limitations to a robot arm or operator

movements. In practice, virtual fixtures are used to constrain a haptically controlled

manipulator‟s motion along a desired path or to align the manipulator‟s end effector with

a task [19, 33, 34, 35]. Usually, the stiffness coefficient along the desired path and

stiffness orthogonal to the path are different. The stiffness ratio indicates the softness or

hardness of the fixture. If the stiffness ratio is close to zero, it is the hardest fixture,

which means that the end-effector can only move along the path without deviation. If the

ratio is close to 1, it is the softest fixture, where the end-effector can move freely and it is

usually used for trajectory following.

 Virtual fixture can also be in the form of potential force fields [32, 36]. Potential

fields are used to produce velocity commands, which, when added to those generated by

the input device, maneuver the manipulator toward the target or away from obstacles

[36]. Figure 2.5 shows that extract and insert fixtures restrict the motion of the end-

effector when it is close to the tool grasping position. This behavior is implemented in

order to avoid a collision of the manipulator with the tool, while allowing the operator to

quickly reach the grasping position [36].

www.manaraa.com

 17

Figure 2.5 Force Clues Generated by Position and Approach Fixtures (Left). Fixtures

Restricting Degrees of Freedom (Right) [36]

The guiding force in this field is calculated using a potential function. This force

can be attractive or repulsive, between the computer-controlled path following and the

deviation from this path caused by the user input. To further explain this, the Lenard-

Jones potential function is used here as an example.

The Lenard-Jones potential function is used in physics simulation of attraction or

repulsion of atoms in Solid Mechanics. The acting regions of the force field are shown in

Figure 2.6. The Lenard-Jones equation represents the inter-atomic potential energy, U,

and is given by:

mn r

B

r

A
U  (2.1)

In Eq. (2.1), r is the distance between atoms, and n, m, A, and B are constants.

The first term in Eq. (2.1) represents the attraction force component, while the second

term represents the repulsive force component. In order to compute the inter-atomic

force between two atoms, the derivative of the potential energy is required as follows:

www.manaraa.com

 18

11 





mn r

mB

r

nA
U

dr

d
F (2.2)

As can be observed from Eq. (2.2), the Lenard-Jones potential function can be

used to avoid obstacles if the A parameter is made equal to zero (i.e., zeroing the

attraction component) and keeping repulsion component only. On the other hand, if the

parameter B is zeroed, then the potential function can be used to create a “stick” effect.

In practice, boundaries defined around the desired path are created to act like virtual

walls for guidance as explained above.

Figure 2.6 Lenard-Jones Potential Functions

2.4 Teleoperation in Real-time

 There are several PC-based robotic control systems. Among these are QMotor 3.0

and QMotor RTK software packages developed by Costescu et al [37]. These packages

use Object Oriented (OO) methods such as inheritance and polymorphism and a

r

U
Repulsive

force

Attractive

force

www.manaraa.com

 19

Client/Server approach for asynchronous communication between different classes of

services at the hardware and software control levels. The Operational Software

Components for Advanced Robotics (OSCAR) framework is another program that uses

OO framework for the development of control programs for robotic manipulators [38].

This particular software was developed as a set of GNU C++ classes for the Sun Solaris

OS for graphical simulation and for VxWorks real-time OS for graphical and physical

robot controllers. These two frameworks are useful for the control of the robotics

manipulator as traditionally performed either through a GUI or manual input from the

user using a keyboard. The QMotor RTK, for example, works exclusively at the joint

level of the robotics arm and does not support a haptic application interface or sensor-

based control.

The Open Robot Control Software (OROCOS) project is an open-source

framework which runs on Linux OS named Linux RTAI (Real-Time Application

Interface for Linux). This platform is a multi-purpose and modular framework for robot

and machine control [39]. Being designed to work under Linux OS, the framework is not

fully POSIX compliant limiting software portability and interoperability. At the time of

this writing, the OROCOS platform does not support haptically controlled teleoperation.

A more recent system, Microsoft Robotics Studio (MSRS) [40, 41] by Microsoft,

is based on services-oriented runtime architecture designed to run on Microsoft operating

systems. MSRS allows asynchronous applications to communicate through Web-based or

Windows-based interfaces developed in C#. A limitation of the services-based approach

is that it does not allow for robotic framework integration and the human-machine

interactions (HMI) through the sense of touch (haptic response) in hard real-time. In

www.manaraa.com

 20

addition, the integration of the sensor-based feedback when it is embedded in the control

software would be difficult to achieve even in soft real-time.

A different platform using haptic control is described by Turro et al [42]. Turro‟s

system was implemented as a client-server system for haptically augmented teleoperation

using a master/slave scheme. The haptic feedback was achieved by using a slave

controller consisting of a multi-processor Linux PC with 4 CPU‟s to control slave and

one CPU to control the master device (for a total of five CPU‟s).

 Some existing PC-based haptic systems are used for rehabilitation, but they do not

integrate sensors and the assistance provided to the user is pre-recorded and, therefore, is

not calculated in real-time. In [43], Hogan et al described the MIT-Manus, a robot-

assisted therapy implementation aimed at the recovery of arm movement after stroke.

The system uses a performance-based impedance control algorithm for controlling

execution of tasks in a 2D plane. The patient receives assistance triggered by speed,

time, or EMG thresholds. Charles et al [44] developed the Robot-Assisted Microsurgery

(RAMS) telerobotic workstation in collaboration with JPL/NASA to augment micro-

surgical dexterity. The system includes a 6-DoF robotic manipulator (slave) that holds

surgical instruments. Motions of the instruments are commanded by moving the handle

on a master device in the desired trajectories. The system was designed to assist skilled

and able-bodied surgeons and is not suitable to assist people with disabilities to execute

activities of daily living (ADL).

 A bilateral teleoperation approach was implemented by Everett et al [45], where a

slave manipulator (7 DOF K-2107 Robotics Research Corporation (RRC) robot

manipulator) is controlled by tracking the motion of a master manipulator (Phantom

www.manaraa.com

 21

device). When the master touches an object, the slave reflects the forces back to the

master device held by the operator [46]. It was developed using an SGI workstation and

ControlShell graphical programming module running in the VxWorks OS. A Hidden

Mark Model (HMM) based skill learning was developed by W. Yu et al, [47], to provide

motion therapy using a haptic interface. This system can be used as a physical therapy

for upper limb coordination, tremor reduction and motion control capabilities for persons

with disabilities of the upper limb in a virtual environment. It was tested in simulation

using a virtual reality representation of the RRC robotic arm. Chan et al [17] describes a

telerobotic system, which includes variable stiffness and damping control schemes to

control the master and the redundant slave dynamics to suit a given task. The

functionality of the control scheme depends on sensed and commanded values of force

and velocity, with no previous knowledge of the environment required. This prior

research was not PC-based and not versatile for a wide range of applications. In 1999

researchers at the Budapest University of Technology and Economics in Hungary started

the REHAROB project using standard, full-scale industrial robots for human therapy.

This project is accounted to be the first in the world to target the use of standard,

commercially available industrial robot (ABB manipulator) for the physiotherapy of

spastic hemi-paretic stroke patients [48].

 In contrast to these systems, the design described in this dissertation allowed us to

create a simplified PC-based framework, which can be implemented widely. A key

problem addressed is the integration of human-machine interactions combining the sense

of touch and visual feedback as integral components of the robotic controller

incorporating the advantages of real-time architecture in a PC-based framework. This

www.manaraa.com

 22

platform provides for the benefits of a research laboratory setup to the user's desktop

without demanding high-end computer resources. The autonomous and teleoperation

control with capabilities for scaling and virtual constraint definitions are implemented

with the intention of assisting the user‟s motion by removing the restriction of the user of

always being in the control loop, but keeping the high level decision making capabilities.

This would result in fatigue reduction for task execution over long periods of time.

The combined work of Chan et al [17] and Everett et al [28] provided an approach

for using uncertain sensor data based on the confidence of the measurements defined in

terms of the mean and the standard deviation. The application of the assistance strategy

concentrated on tasks related to radioactive waste tank cleanup. The nature of the

associated tasks did not allow for autonomous command execution. In their work, the

variable damping algorithm was implemented on a 7 DOF K-2107 Robotics Research

Corporation, RRC, robot arm with position input from a 6 DOF Kraft master hand

controller. The RS232 communication protocol was used to transfer the master controller

signals to a SGI host workstation. A conversion from RS422 to RS232 was required

because the Kraft„s communication protocol is RS422. The system control software was

implemented on a Silicon Graphics GTX 340 Workstation with 2-CPUs. One CPU is

used for the master controller (6-DoF Kraft hand) and for the graphical user interface.

The second CPU was used for the slave controller (RRC K-2107) and a low level

programming approach in “Assembler” language for fast low level communication. The

SGI host computer was connected to the RRC servo controller through a Bit3 VME-

Multi-bus adapter.

www.manaraa.com

 23

 In the present research work, the implementation of autonomous control and

teleoperation control aims to facilitate the use of the assistive platform for any user

making high-level decisions, such as target object selection. The system is capable of

generating trajectories and virtual constraints to be used for autonomous motion or scaled

teleoperation. This development involves the fusion of the optical sensor datasets and

handling the transition states between the supervisory control system (human-in-the-loop)

and the autonomous, sensory-driven control, and vice versa, in real-time. A summary of

the demanded requirements is listed below:

1. The platform for development is a PC-based software controller which responds in

real-time in robotic and haptic modes. The implementation runs under QNX Real-

time Operating System (RTOS). QNX is a fully POSIX-compliant OS. This is a key

feature because by following the POSIX (Portable Operating System Interface)

standard, the application is portable to conformal POSIX standard OS. The following

POSIX services were used in the current development:

i. Priority scheduling

ii. Real-time signals

iii. Real-time Timers

iv. Message passing

v. Thread creation and control

vi. Scheduling and synchronization of multiple threads

2. The telerobotic system uses two forms of robotic control: a closed-form solution of

the inverse kinematics of the 6-DoF robot arm and a resolved-rate based algorithm.

Both control strategies include gravity compensation.

www.manaraa.com

 24

3. The integration of the sensory data from the camera and laser is handled through an

optimization solution to minimize the error using the Levenberg-Marquart

methodology. The error function is defined by the distance between a given point in

the world coordinate system and the same point given by the inverse perspective

projection.

4. Sensor-based assist functions (SAF‟s) are implemented on a 6 DoF Puma560 robot

arm with position input from a 3-DoF (force-based DoF) Phantom-Omni haptic

device. The SAF helps the user to follow a trajectory path described in terms of the

sensory input using motion scaling and virtual fixtures.

5. A low-level network protocol based on UDP (User Datagram Packets) packets

provides the necessary flexibility, reduced latency, and resources for integrating data

from diverse sensors. A single packet contains the vision information as well as the

laser range finder information.

6. Rather than using conversion methods between different communication protocols,

the UDP communication protocol is also used to transfer the master controller signals

to the PC-based host computer. Support for TCP/IP streams is also provided.

7. The communication platform implements features to ensure the order of arrival of the

data and mechanisms to handle data loses, if necessary.

8. The design takes into account that sensory datasets will be sent to multiple machines

at once (for physical and virtual reality simulations) by using the multicast and

broadcast transmission properties of the UDP protocol.

www.manaraa.com

 25

Chapter 3

Hard Real-Time Robotic Controller

3.1 Introduction

In the particular domain of telerobotics, the human is always in the control loop

(supervisory control) while the robot arm is used to manipulate objects in a virtual or real

environment. However, the users of telerobotic systems tend to fatigue over time and

their performance is greatly reduced [49]. In these situations, it is useful to provide

assistance to the user‟s motion and also to provide an autonomous mode of operation to

reduce fatigue when the system is used over long periods of time. In this dissertation the

assistance is provided to the users by the definition of sensor-based assisting or resisting

forces as the users deviate from a trajectory as well as motion-based scaling and virtual

fixture teleoperation. The calculated forces are delivered to the users through the haptic

device (Phantom Omni) which provides the sensation of touch to the user's hands.

The integration of haptic feedback and the generation of the assisting or resisting

forces based on sensory information is a challenge due to the uncertainty in the sensory

information datasets, the deterministic timing and high frequency update rates for a

realistic sensation of touch. In addition to this, the visual information extraction and data

fusion requires computationally intensive pre-processing for obtaining the digital features

from the images. This type of scenario imposes additional constraints in terms of the

timing response of the system. This chapter discusses the approach followed in this

dissertation to deal with the timing constraints and high update rates imposed by

www.manaraa.com

 26

separating the computational tasks into different running threads or “multithreading” the

application with synchronization mechanisms for inter-processing communication to

achieve real-time performance.

3.2 The Need for Real-Time Haptically Controlled Robotics

Real-time (RT) systems are defined as those systems in which the correctness of

the system depends not only on the logical result of computations, but also on the time at

which the results are produced [7]. Following this canonical definition, a real-time

operating system (RTOS) is a specially designed operating system that supports real-time

applications.

A distinctive characteristic of a RT application is that it must satisfy real-world

timing boundaries without delays. In general, the main characteristics of RTOS are:

1. Respond predictably to unpredictable outside events

2. Meet timing deadlines

3. Ability to process multiple threads concurrently

In actual applications, RTOS specifications do not necessarily mean the response

must be "fast". However, the timing requirements to complete the required tasks must be

consistently accurate and predictable. If a computer process is designed and expected to

update its data structure at a specified frequency of 1000Hz for example, the RTOS must

not delay this process by allowing a low priority process to run first. In the literature, this

property of RTOS is called determinism. When a RT application is running multiple

threads or tasks concurrently, a running thread will be in control of certain resources of

the CPU. The running thread must yield to another thread with higher priority, allowing

www.manaraa.com

 27

the higher priority thread to run. The RTOS provides different mechanisms to handle this

type of situations in real-time. Depending on the degree of failure if the system does not

meet a specified deadline, a RTOS can be defined as "soft" or "hard" real-time operating

system. In hard real-time systems, if the timing requirements are not met or the

application response action is delayed for any reason, (e.g., elevators or aircrafts control

systems) a catastrophic failure might occur. In control systems, for example, most

applications must strictly meet real-world timing requirements in order to avoid

catastrophic results. On the other hand, "soft" real-time systems will accept some level of

lateness (e.g. a graphical user interface response for online authentication). Failure is not

classified as catastrophic or incorrect in this case, but as an inconvenient response with a

possible increased cost over time.

In the telerobotic application described in this work where sensor-based assist

functions and haptic feedback are used to guide the user's motion, if the response-time

requirements are not met, the robot controller will not be able to provide a stable control

action, or it might be impossible to reach the prescribed destination with assistance. In

this case, if the response-time constraint is violated, the result is an unrealistic effect or

loss of the "sense of touch" in the user's hands. As shown by Salisbury et al [1], the

haptic force feedback must be updated at a frequency of at least 1000 Hz consistently

without delays in order to have a realistic sensation of touch. Even though the results in

the haptic case might not be catastrophic, the system is described as a failure because the

end results are not correct. Obstacle avoidance might be also an issue when negotiating

obstacles resulting in a collision. The need for a predictable performance is, therefore, a

www.manaraa.com

 28

key factor in the ability of a real-time system to meet an application's response-time

requirements.

The PC-based framework provided by this work allows implementing telerobotic

applications with deterministic response times. The platform developed for real-time

telerobotic, haptic feedback, and sensory data fusion systems is implemented as

multithreaded application. The robotic system runs on QNX RTOS, which provides hard

real-time timing, priority scheduling, and multithreading synchronization [50]. The

haptic and sensory systems run on Windows XP OS, which is an event-driven and not a

real-time operating system. The problem of predictability is alleviated by using a

modified scheduler class developed to handle the high frequency update rates of the

haptic thread under Windows. The platform sensory subsystem consists of a graphical

user interface (GUI) which allows for image acquisition and post-processing. The laser

ranger finder datasets are also displayed.

In this application, when the post-processing phase is completed, a different

thread is assigned the task to act as a broadcasting server. This way, the user interface

continues to be responsive and the display is immediately updated based on the most

recently available data. If the data fusion is not programmed as a multithreaded

application, the sensory subsystem will stop responding properly due to the event-driven

nature of the Windows OS. The haptic and the simulation threads run concurrently, but

they have different update rates, and therefore, the user will have a delayed response or

an event-mismatching between the visual and the haptic feedback. In practice, the

graphical simulation and display requires about 24 to 30 Hz to create a continuous motion

sensation.

www.manaraa.com

 29

3.3 Telerobotic Computational Tasks

In general, the computational tasks in telerobotic applications include the solution

of forward and inverse kinematic problems, trajectory generation, and the calculation of

the associated torques for commanding the motors to reach their destinations. The

forward kinematics deals with the computation of the position and orientation of the tool

frame relative to the base frame [51]. On other hand, the inverse kinematics deals with

the problem of finding all possible sets of joint angles required to attain the given

position and orientation of the end-effector of the robot arm [51]. The trajectory

generation is related to the way a robot arm is moved from one location to another in a

controlled manner. Generally, a trajectory planning module is implemented to create

controlled movements in joint or Cartesian space. Finally, the torque calculations require

the use of the kinematics and dynamics of the robot arm to achieve the desired joint

angles. However, in practice, a form of linearized controller (Proportional-Integral-

Derivative) is used as an approximation in order to reduce the computational intensive

calculations required if the kinematics and the dynamics are used.

These computational tasks lead to the simultaneous motion in 3D space. In

telerobotics this is achieved by controlling the position and orientation of the tool frame

necessary to follow a desired trajectory or for reaching a specified point in space [51].

When the motion of the end-effector of the robot arm is controlled by a haptic interface

(Phantom Omni, for example), the position and orientation of the end-effector of the

haptic device (“haptic tip”) must be mapped to that of the robot arm. The global position

of the end-effector can be determined from the encoders feedback information located at

each joint of the robot arm.

www.manaraa.com

 30

In the case of joint space control, the direct measurements from the haptic device

encoders can be used to determine the joint angles which are then mapped to the

corresponding joint angle of the manipulator. Given the numerical values of the haptic

joint angles is relatively easy to map to the manipulator‟s reference frames. However, a

more convenient way to map the different kinematics of the haptic and the robot arm is to

use a Cartesian space solution, specially when the 3D motion of the robot arm is intended

to be use for the execution of structured tasks.

3.4 Overview of the Robot Arm Controller and Forward Kinematics Equations

 For modeling and controlling the robot arm, the kinematic equations of the links

of the manipulator are necessary. These equations are obtained by systematically

assigning coordinate frames to each link following the Denavit-Hartenberg (DH)

convention [51]. The procedure described in [51] starts by assigning reference

coordinate frames to each link starting at the base  0L , which is considered as a fixed

link, and ending with frame  nL , attached to the robot end-effector of the Puma 560 for

which n = 6 DoF. The following set of rules (0-13) and definitions are considered to

assign coordinate frames to the links and therefore to determine the DH parameters based

on Craig‟s notation [51]:

0. Number the joints from 1 to n starting with the base and ending with the tool yaw,

pitch, and roll, in the specified order.

1. Assign a right-handed orthonormal coordinate frame  0L to the robot base,

making sure that
0z aligns with the rotational axis of joint 1. Set 1i .

www.manaraa.com

 31

2. Align kz with the rotational axis of joint 1i .

3. Locate the origin of  iL at the intersection of iz and 1iz axes. If they do not

intersect, use the intersection of iz with a common normal between iz and 1iz .

4. Select ix to be orthogonal to both iz and 1iz . If iz and 1iz are parallel, point

ix away from 1iz .

5. Select iy to form a right-handed orthonormal coordinate frame iL .

6. Set 1 ii . If ni  , go to step 2; else continue.

7. Set the origin of  iL at the tool tip. Align
iz with the approach vector, iy with

the sliding vector, and ix with the normal vector to the tool. Set 1i .

8. Locate point ib at the intersection of ix and
1iz axes. If they do not intersect,

use the intersection of ix with a common normal between ix and
1iz .

9. Compute i as the angle of rotation from 1ix to ix measure about
1iz .

10. Compute id as the distance from the origin of frame 1iL to point ib measured

along
1iz .

11. Compute ia as the distance from point ib to the origin of frame iL measured

along 1ix .

12. Compute i as the angle of rotation from
1iz to

iz measure about ix .

13. Set 1 ii . If ni  , go to step 8; else stop.

Figure 3.1 shows the frame assignments and the zero pose configuration of the

Puma 560 manipulator following the previous rules and definitions. Once the coordinate

www.manaraa.com

 32

frames are assigned to every link on the chain, the transformations between adjacent

coordinate frames can then be represented by the standard (4 x 4) homogenous coordinate

transformation matrix, T. Therefore, the transformation matrix T is a mathematical

description of the robot manipulator in terms of the DH parameters. Generally, the DH

parameters are presented as a table containing one row of four parameters for each joint-

link set with an attached coordinate frame. The DH parameters allow one reference frame

to be located exactly with respect to the preceding link frame. The geometrical variables

described by the modified DH parameters convention are presented in Table 3.1.

Figure 3.1 Coordinate Frame Assignments to Links of Puma 560 [51]

z4, z6

z5

y4, y6

x4, x5, x6

z3

x3

y3

z2
z1

y1

x1

x2 y2

www.manaraa.com

 33

Table 3.1 DH Parameters of the Puma 560 Robot Arm [51]

Joint i
1i

(rad)

1ia

(m)

id

(m)

i

(rad)

1 0.0 0.0 0.0
1

2
2




 0.0 0.2435
2

3 0.0 0.4318 -0.0934
3

4
2

 -0.0203 0.4331
4

5
2




 0.0 0.0
5

6
2

 0.0 0.0
6

Figure 3.2 illustrates two adjacent link coordinate frames,  1iL and iL , on a

robot manipulator. The frame  iL will be uniquely determined from frame  1iL by the

definition of the DH parameters ia , id , i and i . The transformation matrix Ti

i

1

describing the position and orientation of the frame iL with respect to frame  1iL is

determined (starting from frame 1iL), as follows:

1. Translate a distance id from the origin of frame  1iL in the direction of 1iz axis.

2. Determine the direction of ix by rotating vector 1ix by an angle i around 1iz .

3. Translate a distance 1ia along the vector ix . The position reached defines the

origin of coordinate frame iL , and the vector ix is also determined.

4. Rotate the vector 1iz about ix by an angle 1i to determine the axis vector iz .

www.manaraa.com

 34

Figure 3.2 DH-Based Intermediate Transformations [51]

Symbolically, these four steps can be expressed as [51]:

       iZiZiXiX

i

i dDRaDRT  11

1



  (3.1)

In this equation, the rotation matrix  1iXR  defines a rotation about the ix through an

angle 1i and it is obtained as:

 




























1000

0)cos()sin(0

0)sin()cos(0

0001

11

11

1

ii

ii

iXR



 (3.2)

The translation transformation matrix along the ix axis for a distance 1ia is:

 

























1000

0000

0010

001 1

1

i

iX

a

aD (3.3)

 1iL

1ix

1iz

ix
iz

i

i 1ia
id

Rz

iL

Px

Qx

1iL

 iL

www.manaraa.com

 35

The rotation matrix  iZR  defines a rotation around 1iz by an angle i and is given by:

 

















 



1000

0100

00)cos()sin(

00)sin()cos(

ii

ii

iZR




 (3.4)

The translation transformation matrix along the 1iz axis for a distance id is:

 





















1000

000

0010

0001

i

iZ
d

dD (3.5)

By substituting Equations (3.2) through (3.5) into Eq. (3.1) and performing the symbolic

multiplications yield to the homogenous transformation matrix based on the modified DH

parameters:

   
           
           


































1000

coscossincossinsin

sinsincoscoscossin

0sincos

1111

1111

1

1

iiiiiii

iiiiiii

iii

i

i
d

d

a

T






 (3.6)

Table 3.1 shows the DH parameters at the home position. The objective now is to obtain

the corresponding transformation matrices that relate the spatial position and orientation

of the links connecting all the joints of the Puma 560 manipulator (See Appendix A).

The transformation of the end-effector of the robot arm is found as:

TTTTTTT 5

6

4

5

3

4

2

3

1

2

0

1

0

6  (3.7a)

The final transformation obtained after the symbolic evaluation of Eq. (3.7a) can be

written as:

www.manaraa.com

 36





















1000

333231

232221

131211

0

6

z

y

x

prrr

prrr

prrr

T (3.7b)

where,

    64654155235465423111 scccsscsssscccccr  (3.7c)

    64654165236465423121 scccsccssssccccsr 

  6523646542331 cscsscccsr 

    65464165236465423112 scsccsssscssccccr 

    65464165236465423122 scscccssscsscccsr 

  6523646542332 ssccssccsr 

  5415235423113 ssscsscccr 

  5415235423123 ssccssccsr 

523542333 ccscsr 

  13234233221 sdsdcacacpx 

  13234233221 cdsdcacaspy 

23422233 cdsasapz 

 Eq. (3.7c) represents the forward kinematic equations of the Puma 560

manipulator. This is the set of equations used to determine the end-effector position in

the Cartesian space. A similar procedure is followed to assign coordinate frames to the

www.manaraa.com

 37

sensors (laser and camera) as well as to the object of interest and the workstation. A

detailed discussion of the techniques used is presented later.

3.5 General Nonlinear Robotic Model

 In most practical applications of 6-DoF robot arms, the joint velocities required to

achieve a predefined configuration (position and orientation) of the end-effector of the

robot arm at a desired speed are obtained by linearization of the dynamic governing

equation [52]. The explicit dynamic model solution of the manipulator for controlling the

robot arm is avoided. However, as shown by Armstrong et al [52], an abbreviated

explicit model of the Puma 560 is less computationally expensive which allows for a

simplified realization. The equation of motion for the robot arm can be written in terms

of the 6-dimensional vector of joint positions)(tq , as follows:

)(),()(qGqqFqVqqM   (3.8)

where,

16 vector of generalized input forces,

66)(qM inertia matrix,

66V viscous friction diagonal matrix,

16),(qqF  vector of Coriolis and centrifugal terms,

16)(qG vector of gravitational terms

 For tracking the desired trajectories in joint space where the joint position)(tq is

specified, the required generalized input torques to control the robot arm are calculated

so that all joints are able to reach the prescribed position and orientation at the desired

www.manaraa.com

 38

velocities and accelerations (if specified). Several solution schemes have been suggested

to reduce the complexity of the solution to Eq. (3.8). The most commonly used technique

for the linearization of (3.8) was devised by Whitney [53, 54]. This technique resolves

the desired end-effector motion into the necessary joint motions reducing the complexity

of the solution. This method is known as the Resolved-Rate Method which provides a

numerical solution in the end-effector space.

 Considering Whitney‟s solution scheme, the Jacobian and the Inverse Jacobian of

the manipulator are required to solve the inverse kinematics problem. The position and

the linear velocity components or forces components of the robot‟s end-effector are

specified. The linear velocity components of the end-effector must be transformed into

joint velocities, and then into joint positions by simple numerical integration. Figure 3.3

shows a simplified diagram of the algorithm where the input to the block diagram

corresponds to the linear velocity components of the robot end-effector, [51].

Figure 3.3 Simplified Resolved-Rate Algorithm Block Diagram

As shown in Figure 3.3, only the position vector)(tq is known at this point. The

6-DoF of the Puma is controlled by six (6) brushed DC servo motors, each coupled with

an encoder and a potentiometer. The current angular position of each joint can be

x 1J
Inverse

Jacobian

)(tq


)(tq Puma

560

)(tqc

www.manaraa.com

 39

obtained from the feedback signals from each encoder and potentiometer located at every

joint. The required actuator torques are computed as a linearization feedback form of

Eq. (3.8) based on the desired positions)(tqd and the desired joint rates)(tqd
 ; i.e. the

joint accelerations are not considered (0dq). The computed components of Eq. (3.8)

are defined as follows [55, 56]:

16c computed vector of generalized input forces,

66)(qM c computed inertia matrix,

66cV computed viscous friction diagonal matrix,

16),(qqFc
 computed vector of Coriolis and centrifugal terms,

16)(qGc computed vector of gravitational terms

Considering the computed values, the desired driving torque is computed as:

      )(,)(. qGqqFqVqqKqqKqM ccdvddcc   (3.9)

where dK and vK are the position and velocity gains, respectively. Eq. (3.9) gives an

appropriate control action if   0 qqd . In practical implementation, there will be an

error value defined as   0)( qqte dq . However, assuming that convergence is

reached, then the elements of Eq. (3.9) would be equal to the actual elements in Eq. (3.8).

The previous assumption results in the following set of equality constraints:

)()(qMqM c  (3.10)

www.manaraa.com

 40

VVc  (3.11)

),(),(qqFqqFc
  (3.12)

)()(qGqGc  (3.13)

If the constraints expressed by Eq. (3.10) to (3.13) are satisfied, then Eq. (3.9) yields to:

      )(,)(. qGqqFqVqqKqqKqM dvdd   (3.14)

Equating (3.9) and (3.14) yields to the closed-loop system dynamics equation:

     0)( qqKqqKqM dvdd
 (3.15)

 As can be observed in Eq. (3.15), this simplification does not include the joint

accelerations, so it represents a set of independent first-order differential equations for

each joint of the manipulator. The response characteristics of the systems of differential

equations can be adjusted by the proper selection of the gains dK and vK . Eq. (3.15) can

now be expressed as function of the error qe and the error rate qe as:

0 qvqd eKeK  (3.16)

 Eq. (3.16) represents a linearized feedback form and it will be valid as long as the

joint positions)(tq converge to the desired joint positions)(tqd . In this research work,

the actual implementation of the manipulator‟s controller includes the gravitational term,

)(qG and the closed-loop system with a Proportional-Derivative (PD) feedback control

law becomes:

www.manaraa.com

 41

   )(qGqqKqqK dvdd   (3.17)

The PD controller with gravity compensation produces a global asymptotically stable

closed-loop system through appropriate selection of the proportional and derivative set of

gains [57] as long as the configuration of the robot arm is not singular. The calculation of

the gravitational compensation terms requires the inertia values as well as the locations of

the center of gravity of every link of the manipulator. Those parameters were

experimentally determined by Armstrong et al [52] for the Puma 560 and are presented in

Table 3.2.

 The use of Lagrange‟s equation facilitates the derivation of the gravitational

terms. The calculation of the required torques to compensate of the gravitational action

will be a function of the joint-space configuration (pose) of the manipulator and the

gravitational constant, g. The kinetic iK and potential iL energies for each link can be

expressed in terms of the joint variables iq and the link mass lim located at the respective

center of gravity of the link. The gravitational components will appear naturally in the

final manipulator dynamics equation in the standard form given by Eq. (3.14). A detailed

explanation of the procedure can be found in [52].

www.manaraa.com

 42

Table 3.2 Link Mass and Center of Gravity Locations [52]

Link i mass

(kg)
xr

(mm)

yr

(mm)

zr

(mm)

1 - - - -

2 17.40 68 6 -16

3 4.80 0 -70 14

4 0.82 0 -143 14

5 0.34 0 0 0

6 0.09 0 0 32

Detached wrist 2.24 0 0 -64

 In this research work, the gravitational compensation is applied to every joint of

the manipulator. Using the DH parameters from Table 3.1 and the link mass and center

of gravity locations from Table 3.2, the gravitational constant components  6...1ig i

corresponding to each joint are found to be:

  
  

 
 

  665

65434

223

444654332

22265431

zl

lll

yl

zllllyl

xlllll

rmgg

mmmagg

rmgg

rmdmmmrmgg

rmammmmgg











 (3.18)

The gravitational terms as a function of the position vector G(q) can be obtained as

follows:

0
1
g (3.19)

 5423523523423232212
scccsgcgsgsgcgg 

 542352352342323

scccsgcgsgg 

542354
sssgg 

 542352355
scsscgg 

0
6
g

www.manaraa.com

 43

 Substituting all the terms in Eq. (3.19) into Eq. (3.17) gives the mathematical

expression for calculating the driving torques of the manipulator in terms of the joint

angle values at each time interval.

3.6 Generic Architecture for a Real-Time Robotic Controller

The components of a robotic system (robot arm, controller, sensors, user

interface/input, signal conditioners, and amplifiers) must perform different activities and

interchange information among different modules of the system to accomplish different

desired tasks. This section describes the multithreaded PC-based implementation of a

real-time controller for a haptically interfaced 6-DoF robot arm. To accomplish this, the

feedback signals from the haptic device as well as the sensory information must be

transferred to the arm controller in real-time in a deterministic fashion by the host

computer.

The nature of this application demands a real-time response in order to be usable

for enhancing the manipulation capabilities of users in cases where the haptic interface

provides force feedback and is an integral part of the robot arm controller. For this to be

possible, it is not acceptable to have delays in the haptic response. For example, it is not

acceptable that the haptic device tip penetrates the rigid body rendered in the graphical

scene during a haptic cycle [58]. In the other hand, the integration of sensory-assisted

functions, SAF‟s, to assist the user‟s motion to execute a particular task requires the

sensor datasets to be also available in a deterministic fashion even though the sensor

update rates are smaller than the robotic control signals. In the case of humans, it has

been determined that the transmission of realistic sensation of touch occurs at frequencies

www.manaraa.com

 44

over 1.0Khz [1, 3]. This corresponds to what was previously stated, the update rate of the

feedback signals from the haptic device must be at least 1000Hz (1.0Khz) in order to

generate rigid body sensations in the user‟s hands [1, 2].

An additional constraint of this type of application is the definition of the limits of

the achievable stiffness in the environment for stable control of the haptic interface [3].

The platform implemented must ensure that the transmitted signals and the computed

output torques are not delayed by a variable amount of time depending on the CPU

system loads. To satisfy the forementioned requirements for any haptic control system

for telerobotics applications, the following threads were defined:

1. The determination of the target position (in Joint or Cartesian space) from the

haptic device interface,

2. The computation of the joint angles to reach the desired position,

3. A trajectory generation thread which computes position set-point commands, and

4. The computation of the torques (a PD software controller with gravity

compensation) required to drive the motors (manipulator control program) based

on the positional error signals. The error-based control signals of the robot arm

(used for Joint-Torque actuation control) are computed at the same update rate as

the haptic signals.

It must be taken into account that since there are multiple threads running at the

same time, there is a chance of conflict when accessing shared memory or data structures.

For example, the case when one thread is writing data to the memory and a second thread

is reading from that same memory. In order to avoid data corruption (“mutual

exclusion”), a synchronization method is required to ensure exclusive access to shared

www.manaraa.com

 45

resources. QNX RTOS was chosen for this platform because it is a fully compliant

Portable Operating System Interface (POSIX) operating system and it provides multiple

synchronization primitives, such as mutexes, real-time semaphores, conditional variables,

joining, and barriers [50]. The POSIX standard is maintained by the IEEE and it is

recognized by ISO and ANSI. All of these primitives implement mutual exclusion but

have varying performance benefits and usage models [59]. The synchronization

mechanism implemented is based on real-time semaphore signals and message passing,

[50, 59].

 Figure 3.4 shows the multithreaded architecture of the telerobotic control system.

As shown, only the robotic controller side of the design is illustrated in this figure.

Figure 3.4 Multithreaded Robot Arm Controller Architecture

The telerobotic control system implemented in this work requires the interaction

of three fundamental components or subsystems: sensory, control, and actuation

subsystems. The sensory subsystem handles the measurements of physical quantities and

“state” of the environment. At this level, the camera and the laser input, the joint encoder

readings, as well as the haptic interface information, are gathered and processed. The

Traj. Gen. Thread

Torque Gen. Thread

Sensor Data Thread

Comm. Thread - Send

Comm. Thread - Receive

 
16xq

  16x

 
13xp

   
1316

| xx pq 

 1333 | xx tR

Synch.

Mech.

Main
Application

Thread

www.manaraa.com

 46

control subsystem uses the sensors input to compute an action command to drive the

actuators. The actuation subsystem (motors and transmission mechanisms) is responsible

for physically changing the manipulator position and orientation. In order to control the

robotic system and to achieve a desired configuration, the sensing and the corresponding

commanded actuation must meet strict timing constraints. In other words, the scheduled

activities of the different subsystems must not be delayed before a relatively short

deadline for stable control of the robot arm. So, consistency and predictability are

fundamental requirements for the sensor-based telerobotic control system to be

“controllable”.

The generic architecture described in the present work is a multithreaded

implementation, where the shared resources (critical section or region) are accessed by

multiple threads concurrently. The QNX thread programming model allows multiple

threads to access the CPU simultaneously with priority-based scheduling. This means

that the kernel will block the threads based on priorities and scheduling policies defined

for every thread created, [50]. The priority levels are defined by QNX from 0 as the

lowest priority to 63 as the highest. These priority levels are strictly enforced by the

operating system. This way, the thread with the highest priority that is ready to run will

be running until it is blocked. At each priority, the threads in QNX are scheduled

according to one of the available policies (First-Input-First-Output, FIFO, and Round-

Robin, RR). These policies are only activated when more than one thread is ready to run

at the same priority.

Figure 3.5 shows a diagram of the data flow. As illustrated, threads T1, T3, and

T4 are at the highest priority which means that they will share the CPU based on the

www.manaraa.com

 47

thread‟s scheduling policy assigned to each particular thread, [50]. The scheduler selects

the next thread to run by looking at the priority assigned to the thread in the READY

state. The thread with the highest priority that‟s at the head of its priority‟s queue is

selected to run. For instance, as shown in Figure 3.5, T1 is “active” and “READY” to

run because it has the highest priority and it is at the “head of the queue”. As stated

before, the scheduling policy will be applied only when threads with the same priority are

ready to run and a decision is required.

Figure 3.5 “Ready/Blocked” States, Adapted from [50]

As multiple threads are running at the same time, there is a possibility of data

corruption. In this research work, semaphore signals (a variable that indicates the status

of a shared resource) and message passing [50] is used as the synchronization mechanism

to prevent data corruption. The semaphore signaling mechanism used for

synchronization is set up before starting any of the implemented threads shown in Figure

3.4. If any previously defined thread is currently blocked waiting for the semaphore, the

Priority
Level

0

T1

63

T3 T4

T2 T5

T6

www.manaraa.com

 48

next thread to be unblocked is determined in accordance with the scheduling policy

defined for the blocked thread. If the situation arises where multiple threads are blocked

waiting for the semaphore, then the highest priority thread that has been waiting the

longest is unblocked; i.e. access is granted based on priority and scheduling policy.

In general, when the supervisory control scheme (“human-in-the-loop”) is used,

the sensory information can be used for adjusting the trajectory of the end-effector of the

robot arm to guide the user‟s motion through a haptic interface. In order to combine the

camera, the laser, encoder readings, and haptic sensory inputs to assist the user during

task execution, the telerobotic system must meet tightly defined response constraints to

avoid instability caused by time delays such as oscillations, collisions, and the loss of

rigid body sensations while touching objects. The correctness of the system response

depends not only on the logical result of computations, but also on the time at which the

results are produced [7]. At the control level of the telerobotic system, the different

computational processes to execute a particular motion in 3D space, such as trajectory

following and the required torque computations need to interchange information. In this

work, multiple threads were designed to handle the signals of the robot controller as well

as the visual and haptic information.

The following is a summary of the key aspects of the generic architecture for the

real-time telerobotic controller proposed in this work. The real-time application design

enables the possibility to communicate between different running threads. This allows the

different subsystems to interact with each other and share the same data structure. Even

though this inter-process communication is a highly desirable design feature of the

telerobotic system, there might be a chance of data corruption when a running thread

www.manaraa.com

 49

attempts to change data while another thread is using the same data. For instance, when

the “Trajectory Generation Thread” is accessing its data structure for writing and the

“Torque Generation Thread” is accessing the same data structure for reading. In such

case, the concept of “mutual exclusion” of the data can be accomplished in RTOS‟s by

the use of real-time semaphores (a variable that indicates the status of a shared resource)

without affecting the responsiveness of the operating system [50]. Another important

aspect is the preemptive scheduling of threads based on predefined priority level of each

thread.

 Figure 3.6 illustrates the integration of the different subsystems encompassing the

system architecture. As shown, the system conforms to a modular design which

facilitates scalability and application of the multithreading programming paradigms to

other telerobotic applications in rehabilitation, training, surgery, defense, research, device

testing, and assistive technology solutions.

Figure 3.6 Block Diagram of the System Architecture

Phantom

Omni Puma560

Omni

Controller

Puma

Controller

Virtual

Environment
Amplifier &

Motion

Controllers

Sensors

(Camera,

Laser)

Video Stream

from Camera

www.manaraa.com

 50

3.7 Cartesian Trajectory Generation Thread

 The trajectory generation thread solves the inverse kinematic equations of the

robotic arm for non-redundant robot arms and an inverse Jacobian approach for

redundant robot arms, as discussed later this section. For the case of the Puma 560, both

implementations are available in the proposed system. The inverse kinematics solution

gives the joint values corresponding to positions and orientations of the end-effector. For

the non-redundant case, the trajectory generation thread is composed of the following

steps:

1. At every time step, define ttt  .

2. Obtain the position and orientation of the end-effector corresponding to the

desired trajectory function (a straight-line, for example) as explained below.

3. Solve the inverse kinematic problem to obtain the joint values corresponding to

the position and orientation obtained in (2).

4. Compute the driving torque based on the controller scheme being used. In this

particular implementation a Proportional-Derivative-Plus-Gravitational

Compensation.

5. Send the computed torques to the robotic controller.

6. Repeat the loop until the final destination is reached.

 The straight line motion in the trajectory generation thread is accomplished by

computing the total transformation required to move the robotic arm from point i (defined

as the initial) to j (defined as the destination). Once the total transformation is calculated,

it must be divided into smaller segments to obtain the intermediate points for a smooth

www.manaraa.com

 51

transition. The total transformation, T, defined between the initial position and

orientation, iT and the final position and orientation fT is derived as follows:

TTT if  (3.20)

Pre-multiplying by the inverse of iT yields to:

TTTTT iifi

11 
 (3.21)

So, the required total transformation between points A and B is given as:

fi TTT
1

 (3.22)

 In order to compute the intermediate points, the total transformation can be

decomposed into a translation for moving the origin of the initial end-effector frame to

the destination frame and a rotation about a single axis ̂ to align the end-effector frame

to the desired goal frame. In the literature, this method is known as the single-axis

rotation method [60]. In the method, the translation component can be easily divided into

smaller linear segments. However, the rotational components are nonlinear and a

procedure to ensure orthogonality of the axes is required as well as provisions to avoid

representational singularities (See Appendix B).

www.manaraa.com

 52

3.8 Resolved-Rate Thread

 This thread deals with implementation of the resolved-rate algorithm described in

[53, 54, 56]. The joint velocities are determined from the Cartesian velocities as follows:

XJ   (3.23)

where,

 16 desired vector of joint velocities,

16X : commanded vector of Cartesian velocities (from the haptic device interface)

66J : is the pseudo-inverse of the Jacobian of the robot arm.

 The pseudo-inverse J is given by   1  TT JJJJ . However, rather than

directly performing a pseudo-inverse calculation, the following relationship is defined:

yJJX T (3.24)

 The 16y vector of independent coefficients can be solved with a LU

decomposition method avoiding the computationally expensive process of the inverse of

matrix defined as   1TJJ . Once the vector y is known, the required angle rates  are

obtained from:

yJ T (3.25)

 The resulting  is the least-norm joint velocity vector (or joint rate) which

produces the required end-effector Cartesian velocity vector X , [56]. The numerical

techniques associated with the calculation of resolved rate algorithm are all implemented

in C++ to run under QNX. Figure 3.7 illustrates the process.

www.manaraa.com

 53

Figure 3.7 Cartesian to Joint Space Conversion in the Robotic Workspace

3.9 Sensory Information Threads

Sensors give the robot the ability to interact with an unknown or unstructured

environment [61]. In practice, the robot will not be able to “view” the entire

environment. If the workspace is defined as a matrix of a determined size, the robot arm

will reach only a set of local matrix cells around the robot. Sensors return information

about their environment by physically interacting with the real world. The nature of this

interaction may be “passive” or “active”. Passive sensors simply record emissions

already present in the environment. Active sensors emit a signal and measure how the

environment modifies the signal. In this research work, a CCD camera and a laser range

finder are passive-type sensors used for the location of objects of interest. The sensory

information threads are in charge of data acquisition and post-processing of the sensory

datasets. It consists of six (6) concurrent threads with different update rates of their

respective data structures:

LU X Mult  






Fwd

Kin

Trans

pose

J TJ

TJJ

Robot

Derivative  Tzyx  ,,

 Tzyx VVV ,,

TJ

y

null

www.manaraa.com

 54

1. The collection of image information and processing: This thread is responsible

for capturing the images and image processing (binarization, edge detection, and

feature extraction).

2. The laser ranger sensor thread: This thread reads the analog signals coming from

the laser sensor. The output from laser finder is a voltage value which is

proportional to the range or distance measured. To have access to this analog

signal from a PC, it needs to be calibrated and converted to digital signals using

an Analog to Digital Converter as described in Appendix G.

3. The haptic Servo-loop thread: This thread implements the haptic effects (spring-

force model, spring-damper model, Coulomb‟s friction, among others) in

simulation. This thread requires an update rate over 1000Hz for a realistic

sensation of the particular effect through the actuators of the Phantom Omni. The

differential transformation matrices (position and orientation) corresponding to

the haptic tip are updated at this rate.

4. The collision-detection thread (user and virtual objects interaction)

5. The graphic thread: displays the 3D virtual reality model on the screen and

communicates with the haptic servo loop to update the display accordingly.

6. The communication thread: implements a low-level User Datagram Protocol

(UDP) packet protocol with provision for data losses and order of arrival of the

sensory datasets.

 These threads are run as six (6) separate threads concurrently or simultaneously,

but with different update rates of their respective data structures. The sensory datasets

www.manaraa.com

 55

fusion as well as the velocity and differential transformations of the haptic end effector is

then transferred to the manipulator controller. The QNX software design uses a

scheduled thread for communication. This communication thread consists of a low-level

network protocol based on UDP packets. The UDP protocol is flexible in its data

structure, it can be extended to prevent data losses, ensure the order of arrival of the data

transmitted and has reduced latency. These properties are desirable for transmission of

data from diverse sensors. In this particular implementation, a single packet contains the

data fusion from the visual and the laser range finder information. The design takes into

account that datasets could be sent to multiple machines at once (for physical and virtual

reality simulations, for example) by using the multicasting and broadcasting properties of

the UDP transmission protocol. Due to the connectionless nature of the UDP protocol

and its disregard for network congestion, the derived protocol implements programmatic

features to assure the order of arrival of the data and mechanisms to handle data loses, if

any.

3.10 Summary

 In this chapter, the distinctive features of real-time operating system and real-time

applications are presented in relation to the multithreading tasks of the telerobotic system.

The forward kinematics of the 6-DoF manipulator is formulated in terms of the

homogenous transformations and the Denavit-Hartenberg (DH) parameters. The inverse

kinematic formulations are developed using Whitney‟s resolved rate approach in order to

make the solution extensible to redundant robot arms. A linearized mathematical model

of the control system is described in terms of the error signals between the actual

www.manaraa.com

 56

positions and the desired positions with gravitational compensation. The implemented

multi-threading approach is explained and the threads defined for executing a particular

motion, the trajectory following, sensory data fusion, as well as the torques required to

drive the arm are discussed. The multiple threads designed to handle the signals of the

robot controller as well as the visual and haptic data fusion with provisions for inter-

processing communication; priority-based execution and data corruption avoidance are

explained.

www.manaraa.com

 57

Chapter 4

Sensor-Based Assistance, Autonomous and Teleoperation Control

4.1 Introduction

 In general, a telerobotic system consists of a master user-input device operated by

a human and the slave robot placed at a remote location and controlled using a

supervisory control scheme. This form of teleoperation requires the human to be in the

control loop at all times. Autonomous and teleoperation control modes enable the system

to combine human high level decisions with the computer-based intelligence control.

The idea of incorporating sensor-based assistance to the system is to facilitate task

executions and to remove the skills required for operating the system. This work focuses

on enhancing the capabilities of users using intelligent autonomous and teleoperation

(telerobotic) control to combine human high level decisions with computer intelligence

on a hard real-time master-slave system that will help users to execute different tasks in

an easier and faster manner. The human decision making component comes from locating

the target objects in the environment using simple sensors and selecting a combination of

different modes of operation like the autonomous control, scaled, virtual fixture based,

position or velocity based teleoperation control modes.

 In this chapter, the concept of assist function is defined in relation to the basic

haptic parameters and the control law equations required to determine the intended path

based on the master„s end-effector position and sensory input are outlined. The different

operation modes derived from the implementation of the autonomous control mode and

www.manaraa.com

 58

teleoperation control scheme are also described. The concept of the centroid of the object

used in the derivation of the scaled and virtual fixture constraints is assumed to be known

and the details of its determination will be presented in Chapter 5.

4.2 Sensor-Based Telerobotic Control Theory

The sensor-based assistance and telerobotic control implementations depend on

either position or velocity control variables. For position-based assistance a simple form

is scaling, in which the motion of the slave‟s end-effector is scaled up in the desired

direction and scaled down in any other direction. Similarly, in the case of velocity

assistance, the velocity is scaled according to whether the motion in a particular direction

is serving to further accomplishing the desired effect of the motion, for example, when

moving towards a target object. For instance, the 3D Cartesian based mapping from

master to slave makes it very easy and quick for the users to point to objects in the

environment with the laser range finder. Once the object is located by pointing the laser,

it is locked by the system by the press of a key and then the slave can proceed towards

the object in automatic mode or by teleoperation.

4.2.1 Autonomous Control Mode

 Before the activation of the autonomous control mode, the user points the laser to

an object in the environment by teleoperating the slave robot arm. Then the user selects

the automatic mode option to move the gripper towards the object along the linear

trajectory (line of sight) generated by the laser as shown in the Figure 4.1. After reaching

www.manaraa.com

 59

a certain threshold distance, the arm moves along a secondary trajectory to account for

the laser offset distance from the gripper as shown in Figure 4.1.

Figure 4.1 Conceptual Representation of Autonomous Control Mode

As explained in Chapter 3, the resolved-rate approach for Cartesian motion is

used to compute required joint velocities from the Cartesian velocities of the end-

effector. When the user selects the „Automatic Mode‟, a linear trajectory in the form of

differential transformation matrices at each of the sampling points is computed between

the current end-effector position and the target object position in hand coordinates. Then,

the resulting transformations are transformed to base coordinates before their use in the

resolved-rate algorithm.

y

θ1

Target object

frame

Omni tip

Position
 tiptiptip zyx ,,

End-effector

frame

Laser

Desired

trajectory

Camera

{o}

D

{f}

{i}

www.manaraa.com

 60

If the transformation of the current end effector position with respect to the base,

obtained from the solution of the forward kinematics of the manipulator, is denoted

by Ti
0 , then the transformation of the target object with respect to the base Tf

0 can be

computed by the following operation:

TTT i

fif *00 
 (4.1)

where Tif is given by Eq. (4.2) and D is the measured distance from the laser.

(4.2)

The equivalent angle-axis method [22] is used for obtaining the rotation part, and

linear interpolation to obtain the linear part of transformations at the sampling points or

“via points”. A Cartesian velocity vector, V, is computed from two consecutive sampling

transforms taken from the set above every 200 Hz which is the refresh rate of the

trajectory generation thread, as explained before. If 1T and 2T are two consecutive

transformations defined as  11111 paonT  and  22222 paonT  , then the

velocity “screw” approximation can be used to obtain the Cartesian velocity vector V as

follows:

 TwvV  (4.3)

where

 12 ppv  (4.4)

and





















1000

100

0010

0001

D
Tif

www.manaraa.com

 61

 







 212121

2

1
aaoonnw (4.5)

The required joint angle rates are computed using the inverse of the Jacobian of the

manipulator as follows:

VJq *1

0


 (4.6)

After integration of the joint rates, the current joint angles are sent to the “Torque

Generation” thread to calculate joint torques to drive the arm.

4.2.2 Position-Based Teleoperation Control Mode

Position-based teleoperation is the default control mode of the telerobotic system.

In this mode, as the Phantom Omni is moved in its workspace by the user, its

transformation matrices are computed by solving the forward kinematics problem, and

mapped to the PUMA base frame. The differential rotations, dR, and differential

translations, dP, of the Phantom Omni are computed between every two consecutive

sampling points by (4.7) and (4.8), respectively.

1*  i

T

i RRdR
 (4.7)

ii PPdP  1 (4.8)

Knowing the current PUMA POSE, TP1, the new end-effector POSE of the PUMA is

computed as:















1|0

|
*12

dPdR
TT PP (4.9)

www.manaraa.com

 62

 For teleoperation, a closed-form solution of the inverse kinematics problem is

used to yield the joint angles which are then sent to the torque generator for computing

joint torques.

4.2.3 Velocity-Based Teleoperation Control Mode

In this mode of teleoperation, the Phantom Omni position determines the PUMA

end-effector speed and direction. In other words, when velocity control is used, the

PUMA end-effector speed changes proportionally to the Phantom Omni changing

position. When the specified velocity is reached, it is maintained until the command

from the Omni is changed. Under velocity control mode, the user will move the Omni‟s

end-effector once to select a direction and speed for the Puma end-effector. Then, the

user will hold the Omni‟s end-effector steady until the gripper mounted on the PUMA is

close to the target object, then move the Omni‟s end-effector back to its initial position in

order to stop close to the target.

The implementation of the velocity-based teleoperation is similar to the position-

based teleoperation mode except that the differential rotations dR and differential

translations dP of the Omni are computed between the initial Omni stylus position when

its button is pushed, and its current position. This way, the Omni pen behaves like a

joystick; the further the joystick moves away from the center, the faster the PUMA end-

effector moves. This is also suitable to wheelchair bound users who are accustomed to

using a wheelchair for mobility.

In this mode, the Phantom Omni end-effector transformation is recorded when the

user clicks the stylus button. The recorded transformation is referred to as in (4.10):

www.manaraa.com

 63

















1|0

| refref

ref
PdR

T (4.10)

Again, as the Omni‟s stylus is moved in its workspace by the user, the current

transformations are sent to the PUMA controller and are mapped to the PUMA base

frame. The differential translation is computed as:

  dtVPPdP factor

ref **2  (4.11)

where

factorV = a constant velocity factor and,

dt = the real time clock refresh rate.

This means that the farther the Omni pen is from the start position, the faster the PUMA

moves as
refP is constant and only 2P is updated at the cycle refresh rate. The differential

rotation dR is computed as:

  2** RfactorRdR R

Tref (4.12)

where  TrefR corresponds to the transpose of refR and Rfactor is a scaling rotation factor.

Then, small increments of dR are computed from equivalent angle-axis method and are

used to transform
refR at the cycle refresh rate to yield new rotational components of the

PUMA end-effector transformation. These new transformations are computed in the same

way as in position-based teleoperation and the inverse kinematics yields joint angles at

the cycle refresh rate, as explained in Chapter 3.

www.manaraa.com

 64

4.2.4 Scaled Teleoperation

Scaled teleoperation is used to scale up or down the user‟s input for assistance and

create virtual constraint using the sensory data. After the user selects the target object

from the environment by pointing the laser, the reference trajectory vector is calculated.

As the user moves the Phantom Omni in its workspace, the translation vectors viak are

computed from the Omni‟s tip transformations and sent to the PUMA controller at every

cycle step. If Pi and Pi+1 are the translation vectors of the homogenous transformations of

two consecutive Omni‟s tip points, then the translation vector iivia PPk  1 can be

projected on the reference vector k to obtain a new vector P as follows:

 
k

k

kk
P via
 (4.13)

The projected vector resulting from (4.13) is then scaled up by multiplying it by a scaling

matrix Kscale given by:



































z

y

x

n

P

P

P

KscaleZ

KscaleY

KscaleX

P

00

00

00

 (4.14)

Similarly, the projections of the current translation vectors are determined on the other

two axes perpendicular to the reference vector k . However, the components of these

vectors are scaled down. As the computations continue, nP becomes the new differential

translation vector computed every cycle. The inverse kinematics on the new

transformation yields the new joint angles that are sent to the torque generator as before.

www.manaraa.com

 65

4.2.5 Virtual Fixture Teleoperation

The virtual fixture constraints are created by completely constraining the PUMA

motion along the reference trajectory vector k locked by the laser. This is done by scaling

up the components of the current projected vector P on the reference vector k and

scaling down to zero the components of the current projected vector P on the axes

perpendicular to k . At the same time, the orientation of the PUMA end-effector frame is

maintained constant throughout the teleoperation. This way the user‟s motion is

completely constrained in the Cartesian space except along the axis parallel to the desired

trajectory. The differential translation vectors to be sent to the PUMA are computed in a

manner similar to the Scaled Teleoperation discussed in 4.2.3, keeping the rotation fixed

and the new transformations yield joint angles at the cycle refresh rate to drive the

PUMA robot arm.

4.3 The Phantom Omni Haptic Interface

A haptic interface, such as the Phantom Omni, has sensors to measure the (6 x 1)

vector corresponding to the position and orientation of its end-effector (3 rotations and 3

translations) as well as the built-in 3-DoF force feedback  
zyx FFF ,, capabilities. The

haptic device used in this work is manufactured by SensAble Technologies® and it is

shown in Figure 4.2.

The positional feedback is obtained from the encoders placed at the motors and

the force measurements are obtained from the actuators of the Phantom Omni interface.

This information can be manipulated to express the assistive forces not just as function of

the end-effector position of the Phantom Omni (also known as the stylus or thimble), but

www.manaraa.com

 66

also as a combination of the latter and external visual information provided by sensors

such as a camera and a laser range finder. Assuming that there is an object of interest in

the field of view of the user, when the user points to the object with the laser, the line of

sight (LoS), which passes through the centroid feature of the object or region of interest

and the manipulator‟s end-effector, provides a visual indication of its location with

respect to a fixed 3-D world reference frame. On the other hand, if the object of interest

is partially or totally occluded from the user‟s point of view, the sensors (camera and

laser range finder) can provide the location of the centroid. In this case, the “LoS”

depends on the robot-mounted camera‟s position in space (known as the camera frame),

the distance and direction of sight. In practice, there will be measurement errors between

the desired position and orientation and the user‟s input interacting with the system.

These error signals can be used to compute force constraints for correcting the deviations

from the intended path and for guiding the user towards the goal.

As previously stated, the Phantom Omni shown in Figure 4.2 provides six (6)

positional degree-of-freedom inputs and three (3) force degree-of-freedom output (See

Appendix F). The Omni model allows users to have the “sensation of touch” of virtual

objects by means of the forces transmitted to the users through the actuators mounted on

the device. It allows for the control of the x, y, and z linear components of the feedback

force, but does not allow for torsional feedback when users rotate the stylus. The stylus

has two buttons (white and blue) such that it can be used as a mouse for “click and drag”,

for example.

www.manaraa.com

 67

Figure 4.2 Phantom Omni Haptic Device

 The Phantom Omni software uses the OpenHaptics software development kit

(SDK) that runs on Windows XP OS. The OpenHaptics SDK consists of a set of two

libraries known as the HDAPI and HLAPI. The HLAPI is a high-level library for haptics

scene rendering. It is best suited for adding haptic interactions to existing OpenGL

graphics applications. On the other hand, the HDAPI provides access to low-level haptic

functions to handle direct force rendering to the actuators of the haptic interface. The

type of feedback force rendered by the haptic device can be time dependant, motion

dependant, or a combination of both. In this work, the motion dependant feedback

combined with the concept of the sensor-based assist functions is used to control the six

(6) Puma 560 robot arm in both, joint and Cartesian spaces.

4.4 Joint and Cartesian Control through the Haptic Interface

 The Puma 560 robot arm can be controlled in joint and Cartesian spaces. Joint

space haptic control means that the six (6) joints of the Phantom Omni are mapped to the

corresponding joint angles of the robot arm. The forward kinematic equations of the

haptic and the robot arm are used at this point to obtain a set of joint angles. After

y

L1

x

z

L2

www.manaraa.com

 68

mapping, the manipulator‟s controller is directed to drive the robot arm to the appropriate

configuration. Figure 4.3 (c) shows the zero configuration position of the Phantom

Omni. When the device is placed as shown in (c), the first three joint angles

 321 ,,  are zero. The gimbals' angles of the device are not shown in this

configuration. On the other hand, Cartesian space haptic control deals with the

determination of the joint angle values to place the manipulator at a desired position and

orientation at the specified velocity. The input velocity components are provided by the

haptic device, as shown in Figure 4.4.

Figure 4.3 Phantom Omni Reference Configurations

4.5 Telerobotic Control System

 The control strategy is a form of generalized bilateral control, which maps

positions and velocity components between the haptic workspace and the Puma 560

workspace [17]. Figure 4.4 shows a block diagram of the control strategy where the

linear velocity components of the Omni‟s tip are mapped to the linear velocity of the

robot arm through the Jacobian uJ . As shown, the inverse of the Jacobian
1

uJ is not

calculated directly (through the inverse or pseudo-inverse methods). Instead, the

y

L1

x

z

L2

(a) Phantom Omni (b) Measured Joint Angles (c) Zero Configuration

Angles

θ1

y y

θ1

θ2

θ3

www.manaraa.com

 69

calculation is performed following the procedure illustrated in section 3.5. This approach

provides an improvement to the computational efficiency of the control strategy

algorithm.

 When joint space control is used, the direct measurements from the optical

encoders mounted on the haptic device are used to determine the joint angles. The

corresponding transformation matrices are then used to represent the haptic's reference

frame relative to the manipulator's reference frame. Given the numerical values of the

haptic joint angles is relatively easy to map to the manipulator‟s reference frames.

Figure 4.4 Telerobotics System Block Diagram

+

_





+

+

Kv

Kp

+

+

 

Bh

Kh 

+
_

dt

d





+

_



dt

d

Ju

Ju
-1



+

_ _

_

_

Phantom

Omni

Puma560

www.manaraa.com

 70

4.6 Indexing with the Haptic Device

 The kinematics of the Phantom Omni is very different from the robot arm

kinematics that it is controlling. A technique known as “indexing” is used to extend the

workspace of the haptic-manipulator interface. The most appropriate way to implement

“indexing” is in Cartesian space. The stylus buttons are used for the user interaction, as

follows: With the white button, the user can only “drag and drop” the virtual object on

the screen, just like a standard mouse, to place the virtual object away from the limits of

the workspace or to re-position the stylus to a more comfortable orientation. On the other

hand, the blue button is used to re-engage the motion of the manipulator through the

Phantom Omni interface. The implementation of switching between these two “states” in

real-time is a challenge because, if it is not done predictably, and/or the commanded

control signals from the haptic are delayed, the telerobotic system can go out of control or

automatically shutdown. This safety feature is built in the hardware of the manipulator‟s

controller in the form of a “watchdog” timer. In addition, the software controller is

designed to expect a specified difference between the current and the next commanded

configuration of the manipulator. If this difference is outside the specified range, the

system is shutdown.

4.7 Assistance Function (SAF) Concept

 As previously mentioned, the haptic interface allows the user to have the

"sensation of touch" of virtual objects through time dependant, motion dependant or a

combination of both feedback forces. The idea of combining those types of forces with

“force assistance” along a trajectory serves the purpose of augmenting the user‟s

www.manaraa.com

 71

dexterity by scaling or by imposing virtual constraints. Also, attractive or repulsive

potential fields can be defined as virtual constraints that are implemented in the haptic

control software to modify the control action provided by the actuators of the haptic

interface, [24].

As shown in Figure 4.5, the SAF constrains the motion of the robot arm to a

desired linear path by constraining the robot end-effector motion along a line defined

between the initial position of the manipulator and the position of the goal point, both

defined in Cartesian space. This way, the calculation of the SAF is based on the

projected line from the end-effector of the manipulator to the intended destination of the

user defined by “pointing” to the object of interest or target. In this discussion, it is

assumed that the location of the centroid that the user is pointing to is known for the

development of the assist function equations. The required computations to identify the

position and orientation of an object in the 3D space are the topic of the next chapter

where the centroid location in Cartesian coordinates is the result of the data fusion of the

optical sensors, camera and laser.

A common application of the assist function concept results from the situation

where the object of interest is partially or totally occluded from the user‟s point of view,

but it is still visible from the sensors point of view (camera and laser range finder

combined model). In this situation, the sensors can provide the location of the centroid

from the images of the object captured by the vision system, the image processing

techniques (binarization, edge detection, and feature extraction), and the inverse mapping

solution. Another application results from the possibility that the user was shaking, due

to tremor illness, for example, and was unable to point the laser range finder precisely on

www.manaraa.com

 72

the object of interest. In this case, the camera information can be used to determine the

location of the centroid of the object and the “offset” can be computed to compensate the

erroneous user input. During the execution of a task, the user is provided with position

and velocity based control schemes as well as autonomous control with the possibility of

switching between them. For instance, the user may choose to approach the target object

in autonomous mode and then switch from autonomous to regular teleoperation for fine

tuning the orientation of the end-effector before grasping. Any combination between

regular, scaled, and virtual fixture modes can be selected by the user to complete the task.

Figure 4.5 Representation of the Sensor-Based Assistance Function

Figure 4.5 illustrates the line of sight vectors defined between the manipulator‟s

end-effector and the region of interest (ROI). At this point, there are two types of

y

θ1

Initial

position

 111 ,, zyx

Desired

trajectory

 
ggg zyx ,,

Goal

position

tip

initr


goal

initr


Haptic tip

Position

 tiptiptip zyx ,,

Fhaptic

Z

X  zyxP ,,

D

d

End-effector

Position

www.manaraa.com

 73

assistive forces. One type will be attractive or repulsive to assist the user while moving

along the trajectory path and the second type will assist the user motion to follow the

prescribed linear path. The latest updates of the position vector obtained in the haptic

thread are used to compute the new positions of the virtual object and to display the effect

of attraction or repulsion. The linear trajectory is defined by the line of sight vector.

Once the user's motion is along the prescribed path, an assist function is generated to

guide the user to follow the trajectory with ease.

Figure 4.6 A Set of Line of Sight Vectors (in Red) Placed Closed to the Centroid of the

Region of Interest (ROI)

 The goal or destination of the robot arm is defined as the centroid of the object of

interest. The coordinates of the centroid feature are computed in pixels relative to the

image plane. As it will be discussed later, sequences of transformations are required to

represent the centroid coordinates relative to the world coordinate system. Also, the

transformation from image space to joint space of the robot arm requires the knowledge

of the kinematic equations of the robot arm. In the case of a robot-mounted camera-laser

0.5

0.5

0.5

www.manaraa.com

 74

suite, the visual information is produced as an input signal defined in the image space.

Therefore, a conversion is necessary for the transformation. The inverse projection

transformation obtained from data provided by the sensory suite (camera and laser range

finder) is used to generate a linear trajectory in joint space using the single axis rotation

method described in [24]. Since the human is in the control loop, rather than attempting

to drive the arm along this path autonomously, the difference between this trajectory and

the user‟s motion as sensed by the haptic device is obtained. Figure 4.6 illustrates the

method implemented to generate the linear trajectory in joint-space.

Figure 4.7 Line of Sight Using Single Axis Rotation [60]

 In cases where the user wants to switch to autonomous control mode to reach the

object of interest, a linear trajectory path is automatically generated using the location of

the centroid of the object calculated using information obtained from the sensor datasets.

a

o

n

a

o
n

a‟

o‟

n‟

̂

i

j

x

y

z

www.manaraa.com

 75

4.8 Summary

 In this chapter, the concept of assist function was defined. The control law

equations required to calculate the haptic feedback based on the haptic position were

developed. The connecting line between the end-effector of the robot arm and the

centroid feature of the image of an object extracted from the optical sensor data fusion

was developed as well. Two types of functions to assist the user were described. One

while approaching the path, and a second for following the prescribed path. The latter is

given by the “line of sight” connection of the end-effector of the manipulator and the

centroid of the object of interest. In order to reduce the burden of tasks execution over

long periods of time, an automatic mode is developed by the generation of a linear

trajectory path using the location of the centroid of the object and the current position of

the end-effector of the manipulator. In the development of the control law, the location

of the centroid was assumed to be known. The procedure to extract this information from

images of the object is the topic of the next chapter as well as the sensor-based assist

functions calculations.

www.manaraa.com

 76

Chapter 5

Visual and Haptic Data for Motion Scaling and Virtual Constraint Definition

5.1 Introduction

In the previous chapter, the concept of the centroid of the object was used to

determine the “line of sight” between the end-effector position of the robot arm and the

object of interest without detailing the procedure followed for its computation. The

centroid calculation is based on information extracted from images of the object of

interest which involves computer vision processes such as edge detection and feature

extraction techniques. In computer vision, CCD cameras are used as passive sensors to

extract data from the captured images. The intensity of the light is used to process the

image information and to extract a model of what the camera “sees”. In practice, a

complication arises from the extraction of 3-dimensional coordinates of an object given

2-dimensional information from the camera‟s image plane. Data fusion from two

different sensors (camera and laser range finder) provides a unique solution to the

problem of reconstructing the 3D object position and orientation with respect to a fixed

coordinate system based on 2-dimensional datasets. In this combined system, the laser

range sensor is used to determine the distance to the observed target object.

 This chapter describes the methodology necessary to calculate the location of the

centroid and its relation to motion scaling and virtual constraints. The detailed

procedures for handling the images, camera calibration, space domain processing, and

www.manaraa.com

 77

mapping of the camera frame with respect to the base reference frame of the robot arm is

also presented.

5.2 Spatial Domain Pre-Processing

 In order to accurately predict the position and orientation of an object or region of

interest, the pixel coordinates of the point in 3D given the points in world coordinates

need to be matched. To accomplish this, the computation of the internal ("intrinsic") and

external ("extrinsic") parameters of the camera is required. The Tsai's camera model as

described in [62] is used to obtain those parameters. The model includes 3D-2D

perspective projection with radial lens distortion compensation. This camera model

defines a total of eleven (11) parameters: five (5) intrinsic or internal parameters and six

(6) extrinsic or external parameters.

The internal parameters describe how the camera forms an image while the

external parameters describe the camera position and orientation with respect to the world

coordinate frame. The internal parameters include the focal length, the center of

projection, and the CCD sensor array dimensions and they are specified by the

manufacturer's design. The intrinsic parameters might vary from device to device even if

they belong to the same manufacturing batch. The specifications might also be affected

by environmental conditions such as distance between the camera and the scene and level

of illumination available.

 The intrinsic parameters are defined as follows [62, 63, 64]:

1. Principal point  
yx CC , : intersection coordinates of the optical axis with the

image plane as shown in Figure 5.1.

www.manaraa.com

 78

2. Scale factors  
yx dd , : scaling factors for the x and y pixel dimensions; i.e., the

horizontal and vertical size of a single pixel in engineering units (millimeters,

inches, meters, etc).

3. Aspect distortion factor  xs : a scale factor to account for the model distortion in

the aspect ratio of the camera.

4. Focal length  f : defines the distance from the optical center (or projection

center) to the image plane as defined in a pinhole camera model (this is different

from the focal length printed on the lens of the camera by the manufacturer).

5. Lens distortion factor (1): first order radial lens distortion coefficient.

The extrinsic or external parameters of the camera define the transformation of

the pose of the camera with respect to a local coordinate system represented by the

chessboard pattern‟s local coordinate system. The six (6) extrinsic camera parameters

are:

1.  zyx RRR ,, - defines rotation angles necessary to obtain the rotational

transformation between the world and camera coordinate frames.

2.  
zyx TTT ,, - corresponds to the translational components between the world and

camera coordinate systems.

Figure 5.1 shows the assigned frames of the Tsai's camera model. Calibration

data for the Tsai's camera model consists of 3D world coordinates of a feature point

 www zyx ,, in engineering units (in mm, for example), and corresponding 2D

coordinates  
ff YX , in pixels of the corresponding feature point in the image.

www.manaraa.com

 79

Figure 5.1 Camera Model Geometry

As shown in Figure 5.1, a sequence of transformations is required to define the

relationship between the position of a point P in world coordinates,  www zyx ,, , and the

same point as projected in the camera reference frame  
ff YX , . The first transformation

is a rigid body transformation from the world coordinate system  www zyx ,, to the

camera-centered coordinate system defined as  ccc zyx ,, . This transformation is

expressed as follows:





































































z

y

x

w

w

w

C

C

C

T

T

T

z

y

x

rrr

rrr

rrr

z

y

x

333231

232221

131211

 (5.1)

wy

cy

cx

cz

}{C

 *, uu YX Target

object in

the scene

P

f

wz

wx

Camera

*
 These coordinates are corrected

later for distortion

}{W

www.manaraa.com

 80

where ijr are the elements of the rotation (orientation) of the camera and  Tzyx TTT

corresponds to the translation vector in the world coordinate system.

 Once this transformation is known, a second transformation relates the

 ccc zyx ,, to the ideal (un-distorted) pinhole camera model  uu YX , . This is

accomplished by using the projective transformation formulas. In other words, the 3D

camera point is projected into a 2D-plane  uu YX , where the subscript u means

"undistorted", because, at this point, there is no correction for lens distortion of the

projected point. The projected transformation is given by Eq. (5.2) and (5.3) as follows:

c

c
u

z

x
fX  (5.2)

c

c
u

z

y
fY  (5.3)

Expanding (5.1) and substituting into Eq. (5.2) and (5.3) yields to:

zwww

xwww
u

Tzryrxr

Tzryrxr
fX






333231

131211 (5.4)

zwww

ywww

u
Tzryrxr

Tzryrxr
fY






333231

232221
 (5.5)

Equations (5.4) and (5.5) represent the undistorted coordinates of the point P.

Next, the 1
st
 order radial distortion model is applied to transform the undistorted points

 uu YX , to the "true" position of the point's image  dd YX , . The corrected coordinates

 uu YX , for distortion are:

   dddu XYXX
22

10.1   (5.6)

   dddu YYXY
22

10.1   (5.7)

www.manaraa.com

 81

Figures 5.2 and 5.3 show some of the results presented to the user through a

graphical user interface. Figure 5.4 show the chessboard pattern used for calibration and

a typical Puma 560 configuration during calibration.

Figure 5.2 Graphical User Interface with Chessboard Calibration Pattern

Figure 5.3 Chessboard Calibration Pattern at a Different Pose of the Robot Arm

www.manaraa.com

 82

Figure 5.4 Calibration Pattern in the Camera-Mounted Field View

As shown in Figure 5.5, a sequence of conversions is necessary to obtain “true”

representation of the position of the image points and their coordinates in the camera‟s

image frame  
ff YX , .

Figure 5.5 Distorted and Undistorted Sensor and Image Coordinates

 uu YX ,
 dd YX ,  

ff YX ,

Undistorted Sensor Plane Undistorted/Distorted Sensor

Plane
Distorted Image Plane

www.manaraa.com

 83

These conversions are obtained by the evaluation of Eq. (5.8) and (5.9), as follows [65]:

xx

x

d
f Cs

d

X
X 










 (5.8)

y

y

d
f C

d

Y
Y 














 (5.9)

Now, given a set of points of the object of interest in the world coordinate system

 www zyx ,, and the corresponding measured position in the image  
ff YX , , after the

distortion factor has been applied, an error-based objective function can be defined in

terms of the difference between the point's image coordinates and the coordinates

predicted by the camera model as expressed in Eq. 5.10:

   



N

i
iPiI

N

i
iPiI YYXX

1

2

1

2
 (5.10)

where  
iIiI YX , are the observed image positions and  

iPiP YX , are the predicted

positions based on the known 3D world coordinates  www ZYX ,, after correction of the

radial distortion. The solution is found through the use of a nonlinear optimization

technique known as the Levenberg-Marquardt (LM) method [62, 63, 64] as discussed

next.

5.3 Numerical Optimization Approach for Estimation of the Camera Parameters

The nonlinear optimization for the determination of camera intrinsic and extrinsic

parameters is based on a modified Levenberg-Marquardt (LM) algorithm with a Jacobian

calculated by a forward-difference approximation [62]. The LM method increases the

computational efficiency by combining gradient descend and Gauss-Newton optimization

www.manaraa.com

 84

methods. Initially, the implementation uses a closed-form least squares estimation of

three parameters, the focal length f, z-axis translational component zT and the distortion

coefficient 1 . Using the obtained values as the starting point, an iterative nonlinear

optimization of all parameters simultaneously is executed using the LM algorithm one

more time.

The intrinsic camera parameters will be constants when the camera is moved with

respect to the world reference frame. However, the extrinsic parameters defined by the

position and orientation of the camera with respect to the world coordinate system will

change and, therefore, Eq. (5.1) must be recomputed. This situation will arise every time

the user points to an object and/or rotates the haptic stylus, for example. In this case, the

knowledge of the extrinsic camera parameters is fundamental to determine the

transformations required to map the position and orientation of an object with respect to

the robot arm‟s end effector frame where the camera and laser ranger are mounted. The

procedure involves supplying parameters like window size and number of squares along

each axis (X, Y) of the calibration pattern (chessboard pattern in this work) used for

calibration and identifying the corners of the calibration grid in each of the images.

Then, the Inverse Perspective Mapping (IPM) problem can be addressed.

Figures 5.6 and 5.7 show simulated world-centered and camera-centered

reference frames, respectively, after the optimization.

www.manaraa.com

 85

Figure 5.6 World Centered Camera Calibration using Bouguet„s Toolbox [63]

Figure 5.7 Camera Centered Calibration using Bouguet„s Toolbox [63]

www.manaraa.com

 86

5.4 Inverse Perspective Mapping (IPM)

 The inverse perspective mapping IPM is the key to use the visual information for

driving the manipulator using supervisory control by the determination of the line of sight

defined between the end-effector of the robot arm and the centroid of the object of

interest measured by the sensors. It can be also used for planning the straight line motion

of the end-effector in autonomous mode. The IPM is the opposite problem regarding the

projective projection used during calibration. Figure 5.8 illustrates possible errors

between the calibrated camera model predictions and the actual position of the observed

image points.

Figure 5.8 Illustration of the Error between Predicted and Observed Image Points

During calibration, a set of N image points (N > 5) are matched to the

corresponding points in the world coordinate system and the intrinsic and extrinsic

parameters required for this matching are calculated. On the other hand, the inverse

perspective problem uses the calibration data to determine the position and orientation of

z

x

y

WCS Cartesian Coordinates

Inverse Perspective Projection

www.manaraa.com

 87

points on the image relative to the world coordinate system. Similarly to the calibration

problem, the methodology implemented to solve the inverse perspective problem is once

again the Tsai‟s method [62] and the Levenberg-Marquardt (LM) numerical technique is

also used to solve the optimization problem in a least-square sense. For the application to

this particular problem, input to the Tsai's algorithm is the predicted position and

orientation of the end-effector using the camera and the object position relative to the

base and data from forward kinematics solution of the robot arm. Figure 5.9 shows some

of the coordinate frames assigned in order to obtain the required transformations of the

points in the image plane with respect to the camera plane.

Figure 5.9 Camera and Image Planes Geometrical Relationships

Camera

Plane

Image

Plane

x
cam

ypix

y
cam

z
cam

x
part

y
part

z

part

z
hand

y
hand

x
hand

www.manaraa.com

 88

5.5 Edge Detection and Feature Extraction

 In order to recognize an object from an image, it is assumed that the object can be

segmented out of the image background after binarizing the captured image. A histogram

equalization post-processing is performed to make an even distribution of the grayscale

pixel colors. For edge detection, the “Sobel” method is used to compute the edges [64] as

well as the “Canny” method described in [66]. The Canny method is the preferred

method in this work because it is more efficient in reducing noise from the captured

image. Both methods are standard image processing techniques; the details of their

implementations are described in [64] and [66].

 The methodology for the segmentation is that for each segmented object, the

feature extraction component of the vision system computes the object‟s geometric

features, such as the centroid, perimeter, or area. For the computation of the centroid, the

following two equations are used: 



n

i

x x
n

C
1

1
 and 




n

i

y y
n

C
1

1
 where x and y

represents each individual pixel coordinates, and n defines the total number of pixels in

the 2D region of interest (ROI) [64]. As a result of the image projection and

transformation, only 2D datasets are available which correspond to the x-y plane.

However, in order to drive the robotic system to reach a particular object of interest, the

triple (x, y, and z) Cartesian coordinates are required. So, the additional information,

which corresponds to the z-dimension or depth, is provided by the laser range finder

measurements.

 The acquisition and digitalization processes of the images produce distortions of

the original region of interest (ROI), especially when viewing objects from a large

www.manaraa.com

 89

distance. These distortions increase the uncertainty of the datasets, the complexity of the

image recognition process as well as the computational expense. For applications

involving the location of objects of interest at large distances, the procedure implemented

provides for distortion removal introduced by the lens and the aspect ratio of the camera,

respectively. As stated before, the methodology for the perspective projection camera

model was devised by R. Tsai [62] and implemented by Bouguet [63] as a MatLab

toolbox. This toolbox was used for validating the results of the multithreaded

implementation of this algorithm which is included as a module of the vision system. An

optimized algorithm for the camera calibration is also described in [67].

5.6 Mapping to the Robot Arm Reference Frame

 In order to use the robot-mounted camera (hand-eye) information and the laser

range finder sensor for the robot pose estimation, both intrinsic and extrinsic parameters

of the camera needs to be obtained first. Then, the transformations for mapping the grid's

local coordinate system of sensing array with respect to the manipulator's base frame are

required. It is important to note that, in practice, an intermediate step, known as the pixel-

to-camera transformation, will also be required because points on the object or region of

interest are known at the pixel level. This means that image pixel pairs (pixelrow, pixelcol)

representing row and column numbers, respectively, are available with respect to a fixed

pixel coordinate frame attached to the sensing array.

 From Figure 5.2, the geometrical relationships between the coordinate points in

the camera and image planes can be described. Note that the origin of the image plane is

defined at the left-upper corner of the image window. On the other hand, the origin of

www.manaraa.com

 90

the camera plane is considered to be at the center of the camera plane (the principal point)

which corresponds to one of the intrinsic or internal parameter of the particular camera in

use. For a robot-mounted camera, the offset between the end-effector of the manipulator

and the camera is constant (it does not change between views), but it is unknown. The

assembled homogenous transformation is then represented relative to the end-effector of

the robotic arm given their relative position as illustrated in Figure 5.10. A detailed

procedure of the mapping of the different reference frames can be found in [63].

Figure 5.10 Relationships between the Different Coordinate Frames [63]

In order to be able to drive the robot arm using the sensor information from the

laser and the camera combination, the pose transformation of the robot arm with respect

to the manipulator's base frame is required.

Position i Position j

Gi

Ci

Gj

Cj

{B}

Robot Base

{CW}

Calibration

World

Hcg Hcij

Hgij

Hcj

Hgj

Hcg

www.manaraa.com

 91

From Figure 5.10 the following relationship for the homogeneous transformation

can be extracted:

cijcgcggij HHHH  (5.11)

where,

gijH : (4x4) homogenous transformation of the gripper or end-effector between views.

cgH : (4x4) homogenous transformation of the gripper or end-effector with respect to

the camera.

cijH : (4x4) homogenous transformation of the camera between views.

As stated previously, at this point the Tsai‟s approach is once again used to solve

(5.11) and to determine the position of the camera with respect to the robot hand

coordinate frame. For a full description of the method refer to [62]. The result of the

method will be the transformation matrix cgH . The homogeneous transformations gijH

and cijH are known from the robot forward kinematic equations and from the extrinsic

parameters of the camera calibration procedure discussed earlier. The transformation

cgridH 2 which defines the calibration grid frame with respect to the camera frame can be

found from the inverse of the extrinsic parameters of the camera (Rc, Tc), as follows:

1

333231

232221

131211

2

1000
























z

cccc

y

cccc

x

cccc

cgrid
trrr

trrr

trrr

H (5.12)

www.manaraa.com

 92

where ijr are the elements of the rotation matrix Rc and),,(zyx ttt are the components of

the translation vector Tc.

At a particular position and orientation of the robot manipulator the

transformation gijH is stored and the corresponding extrinsic parameters of the camera

are retrieved given the image of the region of interest (ROI). The camera transformation

in the manipulator base reference frame
ijbcH 2 is:

cggijbc HHH
ij
2 (5.13)

 The calibration grid transformation
ijbgridH 2 can also be obtained with respect to the

robot base frame as:

cijbcbgrid HHH
ijij 22  (5.14)

 The fixed transformation between the end-effector and the robot-mounted camera

can be verified using the following expression:

 
ijbcgjcg HHH 2

1
 (5.15)

 As an additional check to verify the solution, the result of (5.15) must reflect the

fact that the homogeneous transformation of the camera with respect to the gripper or

end-effector frame is constant for all calibration points given that the camera is attached

to the end-effector of the robot arm. Table 5.1 shows the rotation and translation

components of the camera and the predicted manipulator‟s end-effector obtained from

Eq. (5.11) using the Tsai‟s approach corresponding to ten (10) calibration points. This

table was generated using simulation software in MatLab and compared to the recorded

www.manaraa.com

 93

transformation matrices of the end-effector of the Puma robot arm from the forward

kinematics.

Table 5.1 Extrinsic Camera Parameters ( cR ,  cT) and End-effector Rotation and

Translation Matrices ( R ,  T)

Image Rotation

Matrix

 cR

Image

Translation

 cT , mm

End-effector Rotation

Matrix

 R

End-effector

Translation

 T , mm

0.1179 0.9928 -0.0232 -126.5395 -0.6862 0.6945 0.2163 92.8000

0.9902 -0.1158 0.0779 -66.5448 0.7274 0.6530 0.2110 635.6000

0.0747 -0.0322 -0.9967 235.2563 0.0053 0.3021 -0.9533 -326.6000

0.0124 0.9996 -0.0263 -143.9736 -0.6221 0.7609 0.1843 115.9000

0.9937 -0.0094 0.1119 -76.1713 0.7794 0.5796 0.2378 625.8000

0.1116 -0.0275 -0.9934 224.2457 0.0741 0.2916 -0.9537 -338.0000

-0.0849 0.9957 -0.0378 -135.1690 -0.5437 0.8188 0.1844 115.8000

0.9900 0.0886 0.1100 -83.2790 0.8327 0.4990 0.2399 626.7000

0.1129 -0.0281 -0.9932 225.3835 0.1045 0.2840 -0.9531 -336.4000

-0.1185 0.9921 -0.0422 -131.9680 -0.5163 0.8363 0.1843 115.8000

0.9864 0.1225 0.1093 -85.4977 0.8487 0.4709 0.2407 627.0000

0.1136 -0.0287 -0.9931 225.6934 0.1145 0.2807 -0.9529 -335.9000

-0.0856 0.9959 -0.0293 -138.7425 -0.5461 0.8153 0.1925 115.8000

0.9896 0.0884 0.1138 -85.7883 0.8307 0.4976 0.2496 627.6000

0.1159 -0.0193 -0.9931 225.9435 0.1076 0.2962 -0.9490 -334.5000

-0.1478 0.9874 -0.0567 -124.5867 -0.4882 0.8550 0.1749 115.7000

0.9824 0.1532 0.1067 -88.7926 0.8637 0.4447 0.2372 628.1000

0.1140 -0.0400 -0.9927 227.9899 0.1250 0.2669 -0.9556 -333.7000

-0.1117 0.9921 -0.0570 -102.6291 -0.5192 0.8382 0.1666 93.5000

0.9870 0.1174 0.1099 -88.6900 0.8454 0.4752 0.2439 632.0000

0.1157 -0.0440 -0.9923 227.1811 0.1253 0.2675 -0.9554 -333.3000

-0.1417 0.9874 -0.0699 -94.6773 -0.4910 0.8568 0.1574 92.6000

0.9830 0.1487 0.1076 -88.9109 0.8609 0.4497 0.2378 632.2000

0.1167 -0.0535 -0.9917 227.5109 0.1329 0.2523 -0.9585 -333.1000

-0.1053 0.9923 -0.0655 -98.0316 -0.5214 0.8387 0.1574 92.6000

0.9874 0.1121 0.1119 -90.0564 0.8440 0.4796 0.2400 633.0000

0.1183 -0.0529 -0.9916 228.2876 0.1258 0.2580 -0.9579 -331.7000

-0.1066 0.9920 -0.0676 -96.7395 -0.5256 0.8398 0.1359 92.6000

0.9832 0.1153 0.1414 -102.9621 0.8354 0.4793 0.2691 633.2000

0.1480 -0.0514 -0.9876 225.5877 0.1609 0.2550 -0.9535 -331.3000

Once the end-effector transformation is determined based on the sensors data, the

connecting line between the end-effector of the robot arm and the position and orientation

www.manaraa.com

 94

of the centroid feature of the object with respect to the manipulator‟s base is defined as

the desired straight line trajectory.

As explained in Chapter 4, the z-component of the “LoS” is found using the

orthonormal constraint via the cross product:

     
     312332223121

311332123111

rYrrYrrYr

rXrrXrrXr

zyx

imimim

imimim







 (5.16)

 Eq. (5.16) needs to be transformed to coincide with the origin of the end-effector

reference frame for grasping. The necessary transformation correspond to a translation to

specify the line of sight relative to the end-effector frame (the z-axis of the camera is

parallel to the z-axis of the end-effector). The method to calculate the assist function

based on the “LoS” of the camera is discussed in detail in Chapter 6.

5.7 Summary

 This chapter describes the procedure for using the camera and laser information to

compute the centroid location as well as the position and orientation of an object of

interest in a 3D space. The principal utility of the sensory information (camera and laser

range finder) at this level is to provide an automated system for measuring and digitally

processing the content of the images of an object of interest. This information is then

used for calculating the line of sight (LoS) defined between the end-effector position and

the object. Then, the LoS defines a linear trajectory for guiding the user's motion towards

the object of interest. The Levenberg-Marquardt (LM) nonlinear optimization method is

www.manaraa.com

 95

described for the camera and the laser range finder calibration. The LM is also used for

solving the inverse perspective mapping (IPM) to transform from measured points in the

image's plane to the base reference frame of the manipulator.

www.manaraa.com

 96

Chapter 6

Sensor-Based Assistance Function Calculations

6.1 Introduction

 The architecture proposed in this work incorporates assistance to the user's motion

using simple sensors (a camera and a laser range finder). The visual information is

combined with the human inputs and the deviations are corrected by the calculation of

assistive or resistive forces. The line of sight vector defined between the manipulator‟s

end-effector and the object of interest is used as a constraining line. Once the object is in

the view of the eye-in-hand camera, the vision system is activated and all the required

transformations are determined as explained in Chapter 5.

 In the image pre-processing part, the case in which all objects are on the top of a

table is considered. In this situation, the control input is the position and orientation

commands calculated from the visual input as well as the commands of the haptic input

device. This chapter describes the determination of the forces required to provide the

appropriate feedback to guide the user's motion, which are identified here as the sensor-

based assistance functions.

6.2 Generic Scheme for Motion-Dependent Force Feedback Calculation

 The feedback force, F, is computed to maintain the haptic tip constrained to the

user's intended path (see Figure 6.1). This force feedback is generated according the

following control law:

www.manaraa.com

 97

pKpKF  21 (6.1)

where,

F = force feedback through the haptic interface

1K = proportional gain

2K = derivative gain

p = difference between the haptic tip position and target‟s centroid

p = rate of change of p

Figure 6.1 Translational Distance, dij, Used for Feedback Force Control Law

From equation 6.1, the translational spring-damper virtual model is used for the

force computation where dij represents a displacement vector connecting points Pi and Pj.

Pi corresponds to the tip of the haptic stylus, and Pj correspond to a contact node on a

path or contact point on an object of interest. As previously explained, the object‟s

centroid as well as the line of sight are used as geometric features to have a visual

y

θ1

Ks

{W}

ri

rj

C

dij

Pj

si

sj

Pj

www.manaraa.com

 98

indication of the user‟s intended path. The displacement vector from Pi to Pj is obtained

as:

iiijjjij sTrsTrd  (6.2)

where iT and jT are homogenous transformation matrices expressed with respect to the

world coordinate system, {W}.

The corresponding length of the spring-damper,  , is now defined as:

ij

T

ij dd2 (6.3)

The damping force component is a function of the displacement rate which is obtained by

differentiating Eq. (6.3) with respect to time:

ij

T

ij dd  22  (6.4)

After substitution and simplification, Eq. (6.4) yields:

 iiijjj

T

ij
sTrsTr

d



 










 (6.5)

It can be shown that the time derivatives of the transformation matrices can be expressed

in terms of angular velocities, i and j (see Appendix E for details) as:

 
iiiijjjj

T

ij
sTrsTr

d
 










 


 (6.6)

Finally, the magnitude of the force applied to the user's hand through the haptic device is

found to be:

 201)(KKF  (6.7)

www.manaraa.com

 99

Comparing Eq. (6.1) and Eq. (6.7), it is observed that p =)(0  and p = ;

i.e., the shortest distance between the haptic tip position and any point on the connecting

line, as shown in Figure 6.1, is taken to be equivalent to the change in length of a virtual

spring. Similarly, the rate of change p is equivalent to the rate of change of the virtual

spring length.

As it is obvious from this derivation, the torsional components were not taken into

consideration in the calculation. The Phantom Omni device used in this research does

not have built-in actuators such that it can exert torsional forces with the thimble. In the

case of a device with such capabilities, the generalized forces can be calculated using the

principle of virtual work where the virtual displacements can be obtained from the

differential equation expressed in Eq. (6.7) and virtual rotations components can be

obtained in terms of the Euler angles orientation coordinates [68, 69]. The next section

discusses additional forces and effects used to constrain or guide the user‟s motion.

These forces are sent to the haptic device in real-time.

6.3 Sensor-Based Assistance

 The sensors (camera and laser range finder) information needs to be mapped to

the Cartesian space of the manipulator in order to generate an attractive or repulsive force

to guide the user until the object of interest is between the gripper fingers in real time.

As stated before, the line of sight (LoS) is considered to be the intended or desired

user‟s motion. A constraint frame for the end-effector of the manipulator is defined

along the LoS of the camera considering the z-axis pointing in the direction of the camera

axis, the x-axis along the line defined between the initial position of the haptic tip

www.manaraa.com

 100

 tiptiptip zyx ,, and the projection defined by  zyxP ,, as shown in Figure 4.3. There will

be measurement errors between the line of sight and the user‟s input possibly due to the

reduced physical performance due to fatigue of the person interacting with the system or

tremor illness. These error signals are used to compute force constraint‟s to guide the

user towards the destination. As mentioned, the force constraints are defined by two

different models: a) an attractive or repulsive force to guide the user towards the

trajectory, and b) an assistive force to guide the user along the trajectory path. In the case

of approaching the surface of a table, the contact force can be computed as a function of

the remaining distance to the surface.

 The Cartesian motion between the initial position of the manipulator and the goal

position is described in terms of robot arm transformations with respect to the base frame

of the manipulator. One way to accomplish this is to define a translation along a straight

line and a rotation about a fixed axis  Tzyx kkk ,, by an equivalent angle [51, 60]

(See Appendix B). As shown in Figure 4.3, the two constraint points are defined by the

coordinates  111 ,, zyx and  
ggg zyx ,, , respectively. The equation of the 3D line is given

by:

k
zz

zz

yy

yy

xx

xx

ggg
















1

1

1

1

1

1 (6.8)

The projection of the initial position of the end-effector is:

11

11

11

)(

)(

)(

zzzkz

yyyky

xxxkx

g

g

g







 (6.9)

www.manaraa.com

 101

The distance between the projected point  zyxP ,, and the initial point is given by

2

1

2

1

2

1)()()(zzyyxxd  (6.10)

Substituting (4.9) into (4.10) yields:

])()()[(2

1

2

1

2

1

2 zzyyxxkd ggg  (6.11)

 If D is defined as the distance measured using the laser range finder, and it is

expressed in terms of the initial and goal Cartesian coordinates, then

2

1

2

1

2

1)()()(zzyyxxD ggg  . The following computation is performed:

D

d
kDkd  (6.12)

 The projection of the haptic tip‟s initial position  zyxP ,, can be obtained by

substituting (6.11) into (6.9). The constraint frame for the end-effector of the

manipulator can now be obtained by defining the axes as shown in Figure 4.3 where the

z-axis points in the direction of the constraint line, the x-axis along the line defined

between the initial position of the haptic tip  tiptiptip zyx ,, and the projection defined

by  zyxP ,, . The direction of the y-axis can be found using the right-hand rule and

orthogonality condition ZXY


 . After normalization, the transformation matrix R in

terms of the directional cosines  pon


can be found as:

www.manaraa.com

 102





































222222222

222222222

222222222

zyx

z

zyx

z

zyx

z

zyx

y

zyx

y

zyx

y

zyx

x

zyx

x

zyx

x

aaa

a

ooo

o

nnn

n

aaa

a

ooo

o

nnn

n

aaa

a

ooo

o

nnn

n

R (6.13)

 As previously stated, the equivalent single axis-angle method is used to represent

a rotation about a single axis ̂ to align the end-effector frame to the desired goal

configuration. This is also the basis for planning the linear motion for autonomous

execution at the user‟s command. In this case, the linear trajectory is divided into N

smaller segments, where N depends on the distance of travel, nominal linear velocity of

the end-effector and the update rate of the trajectory generation thread. To accomplish

this task, the inverse kinematic equations of the manipulator are solved at each

intermediate position.

 Two different approaches to solve the inverse kinematic equations are

implemented in this work. One approach considers the closed-form solution to obtain the

required joint variables to drive the robot arm to the next segment along the linear

trajectory. This solution is appropriate when the robot arm is kinematically non-

redundant. The second approach is to obtain the joint rates using the inverse Jacobian,

followed by integration to obtain a set of joint angles by the application of Whitney‟s

resolved-rate algorithm. This allows added flexibility for dealing with kinematically

redundant robots. As stated before, the benefit of switching control between the human

www.manaraa.com

 103

user and the automatic control is to reduce the burden of executing repeated tasks and to

provide an appropriate level of assistance to the user by scaling the motion.

 As an example of constrained motion, the haptic end-effector linear velocity can

be assigned to the robot end-effector velocity as haptic

T

robot VRV


 . This velocity can be

scaled using a scaling factor in the constrained direction as follows:

haptic

T

v

v

robot VRK

K

V




















100

00

00

 (6.14)

 Notice that the Z-axis component is not affected by the scale factor because the

constrained frame is defined along the desired path. However, the X and Y directions are

scaled by the scaling factor 10  vK . The resulting velocity components are then used

as the input to the resolved-rate algorithm as shown in the simplified version of the

Whitney‟s algorithm in Figure 3.7, which shows an expanded version as implemented in

the real-time telerobotic controller.

 The current position in the base frame of the haptic device is obtained, the vector

tip

initr


 defined from the starting point to the haptic device position is calculated as

 111 ,, zzyyxxr tiptiptiptip

init 


 (6.15)

Similarly, the vector between the starting and goal (destination) points is obtained as:

 111 ,, zzyyxxr goalgoalgoalgoal

init 


 (6.16)

Finally, the projection of the haptic position on the desired path is obtained through the

use of the dot product as:

www.manaraa.com

 104

    
goal

init

goal

init

goal

init

tip

init

projected r
r

rr
r





 

 (6.17)

 In Eq. (6.17), the vector goal

initr


 is equivalent to obj

initr


 defined by:

 111 ,, zzyyxxr wwwobj

init 


 (6.18)

where the Cartesian coordinates of the object  www zyx ,, are represented in the world

space following the procedure explained in Chapter 5.

The trajectory path or control surface is surrounded by an attractive potential field

the amplitude of which increases with the distance between the end-effector and the

projected point. The assistance force vector is calculated as:

 projectedtip

init

haptic rrKF


 (6.19)

 For a motion task along the X-axis, a general scheme is to constrain the Y and Z

axis directions. If the assisted motion is along the Y axis, then the X and Z directions are

constrained. Table 6.1 shows the different cases for constrained directions in a motion

task.

Table 6.1 Constrained Directions in a Motion Task

X-dir Free Y-dir Free Z-dir Free

 
 














Zhaptic

Yhaptic

X

FfZ

FfY

hapticPosX

 

 













Zhaptic

Y

Xhaptic

FfZ

hapticPosY

FfX

 
 















Z

Yhaptic

Xhaptic

hapticPosZ

FfY

FfX

www.manaraa.com

 105

where,  ZYX hapticPoshapticPoshapticPos ,, corresponds to the current user‟s position

in Cartesian space and  
XhapticFf ,  

YhapticFf ,  
ZhapticFf are the new position after the

constraint force is applied.

 Equation (6.19) includes only the spring-type force feedback. Considering the

force feedback control law represented by Eq. (6.7), it can be observed that this control

law not only compensates for the difference (error signals) between the computer-

generated desired path and the deviation from this path caused by the user input, but it

can also includes a dampening effect. This effect is directly proportional to the velocity

component in the opposite direction of the motion. The combined spring-type and

damping-type feedback forces help the user to stay in the straight trajectory.

 Once the user is moving along the path, additional assistance is provided in the

direction along the linear trajectory as illustrated in Figure 6.2. The linear velocity

components are scaled up or down depending upon the user's motion along the trajectory.

In the illustration, scaledV


corresponds to the scaled velocity vector, user V


is the current

user‟s motion velocity vector, and projV


is the projection of the user‟s velocity vector in

the direction of the desired resultant velocity.

Figure 6.2 Desired Path and "Noisy" Trajectory Input

 scaledV


user V


 projV


www.manaraa.com

 106

 The Phantom Omni has built-in force feedback capabilities, and an attractive or

repulsive force can be rendered through the haptic device interface to constrain the user‟s

motion using the control law defined by Eq. 6.5. The level of assistance can be modified

as the user‟s skills in executing a particular task increase by modifying the scaling factor

K (gain) in the haptic control strategy.

6.4 Comments

 The Cartesian trajectory generated by positioning and orienting the end-effector

toward the object (destination point) is monitored by a separate computational thread. By

separating the data acquisition processing and communication process, a highly

responsive interaction was attained. Even though the manipulation of objects can be

driven through the sense of touch and the optical sensory information while the human is

in the loop, the multithreaded implementation at the sensory suite level allows for the

possibility to switch supervisory control of the robotic arm to an autonomous mode at the

user's command with ease. This transition between a supervisory control mode to an

autonomous control mode reduces the burden on the user and reduces the possibility of

fatigue during long time interactions with the system.

6.5 Summary

 In this chapter, the concept of sensor-based assistance is defined. The assistance

function calculations are described as well as the force feedback required to provide the

appropriate sensor assisted function to guide the user's motion. The line of sight concept

is considered as a visual indication of the intended linear trajectory of the user. The

www.manaraa.com

 107

assistance function was generated to constraint the user‟s motion based on the measured

differences between the LoS, determined through the use of the sensor data fusion, and

the current position of the user, provided by the haptic‟s tip.

www.manaraa.com

 108

Chapter 7

Experimental Methodology and Testbed for Interactive Simulation

7.1 Introduction

 The implementation of a PC-based multithreaded architecture made possible the

design and realization of a real-time robotic system with the capabilities to provide

sensor-based assistance and haptic manipulation of real and virtual objects. In this

chapter, the experiments conducted to validate the control strategies with the actual

hardware are described. The testing of the system was conducted on healthy people

performing a “pick-and-place” task, which is a common activity of daily living (ADL)

task. Three people were trained to use the Phantom Omni interface and to teleoperate the

PUMA manipulator in all control modes to familiarize themselves with the system.

This Chapter presents the methodology used for the experiments with the actual

hardware: a 6-DoF Puma 560 manipulator, a Phantom Omni haptic interface and the

sensory suite consisting of a CCD camera, a Sick DT60 laser range finder and the PUMA

encoders. The performance measures are defined by the "Absolute Position Error"

(APE), the "Absolute Orientation Error" (AOE) indicators, and the task-completion time

which are calculated using the recorded data sets for each experiment. The following list

shows the different comparisons made using the APE and the AOE indicators for position

and velocity based control modes:

www.manaraa.com

 109

1. Autonomous Control Mode

2. Position-Based Regular Teleoperation

3. Position-Based Virtual Fixture Teleoperation

4. Position-Based Scaled Teleoperation

5. Velocity-Based Regular Teleoperation

6. Velocity–Based Virtual Fixture Teleoperation

7. Velocity-Based Scaled Teleoperation

8. Force-Based Virtual Fixture Teleoperation

Chapter 9 discusses and analyses the experimental data gathered for validating the

trajectory tracking and assistive capabilities of the system for guiding the user's motion

during execution and successful completion of the task.

7.2 Methodology for Experiments

 As previously stated, the testing of the system was conducted on three healthy

people performing a “pick-up-a-cup” task. After training the subjects to use the Phantom

Omni interface, they moved the PUMA manipulator in all control modes. The test setup

included a platform in front of the arm, with two markers indicating the pick-up position

and the drop-off (destination) position. These two positions were offset from each other

in all the three Cartesian directions as shown in Figure 7.1. A coffee cup was used as the

intended target to be grasped and moved from the start to the end positions. The start

position for all the experiments is kept constant and it is defined as the start position.

www.manaraa.com

 110

For each test, the position and velocity based teleoperation modes were compared

to regular, scaled and virtual fixture based teleoperation modes in the following way:

1. Position-Based Regular teleoperation vs. Scaled teleoperation

2. Position-Based Regular teleoperation vs. Virtual Fixture

3. Position-Based Regular teleoperation vs. Autonomous

4. Velocity-Based Regular teleoperation vs. Scaled teleoperation

5. Velocity-Based Regular teleoperation vs. Virtual Fixture

6. Velocity-Based Regular teleoperation vs. Autonomous

7. Position-Based Regular teleoperation vs. Force-Based

Figure 7.1 „Pick-up-a-cup‟ Task Experimental Setup

www.manaraa.com

 111

When the user starts the operation under the supervision and observation of the

attendant, the robot is commanded to go from the “parked” position to the “ready”

position by the attendant. The user starts to control the arm from the “ready” position.

The user always starts with the position-based teleoperation mode and then switches the

test mode. While performing an ADL task the user can switch to any mode, however, for

the purposes of testing the user toggles between the position-based teleoperation and the

tested mode. The user has to toggle to position based teleoperation every time to orient

the hand so that it is able to point to target objects, grasp the cup and drop the cup at the

destination point as these steps require re-orientation of the end-effector. For automatic,

scaled and virtual fixture based teleoperation modes, once the object is located by

teleoperation, the user pushes the Phantom Omni stylus button to lock the target and

generate the desired trajectory. Once the user reaches the target vicinity, the user

teleoperates the arm to adjust the gripper and grasp the object. The user then points to the

destination marker and pushes the Omni stylus button again to lock the destination

coordinates and move in the same fashion to the drop-off point and release the object.

In the Scaled Teleoperation mode, the user input was scaled 3X when it was along

the trajectory generated by the laser, and 0.2X when it was perpendicular to the

trajectory. In the case of virtual fixtures, all positions and orientations coming from the

user input were locked (scaled down to 0X) except the position parallel to the trajectory,

which was scaled to 3X. Each control mode was tested five times, and the elapsed-time to

complete the task was recorded. The trajectory generator thread generates a log file

recording the transformation matrices of the tip, the elapsed time and the gripper status at

every loop. Data from this file were conditioned, and used for data analysis.

www.manaraa.com

 112

7.3 Visual and Haptic Testbed to Control a 6-DoF Robot Arm

 In the experiments the Phantom Omni Haptic interface from SensAble

Technologies is used as the master. It is run on a Pentium computer, with 1GHz single

processing unit. The Phantom Omni device uses the OpenHaptics software which runs

on Windows XP OS. A Microsoft Visual Studio C++ program was developed to run the

Phantom Omni controller and render the virtual environment using OpenHaptics [70] and

OpenGL library functions as well as APIs. The commands for creating and interfacing

the PUMA software controller and the Phantom Omni controller were also embedded in

the same program. The protocol for sending and receiving information between the Omni

and the PUMA controller is based on User Datagram Protocol (UDP) sockets. The UDP

socket programming class implemented is a derived class from the Microsoft socket

programming library.

The program running on the Omni controller is multithreaded. These threads

include the main application thread, the graphics thread, the haptics thread, the collision

detection thread (this thread runs on the background and it is responsible for collision

among objects on the virtual environment and no real objects) and the communications

thread for receiving data from PUMA controller. The main application thread starts the

other threads, initializes the Phantom Omni, creates sockets for communication and

integrates the whole application. The graphics thread renders the graphics scene at

approximately 30 Hz refresh rate. This graphics scene is a virtual environment that helps

the user to engage and disengage the PUMA in teleoperation (Figure 7.2). The haptics

thread provides the haptics feedback to the user at a refresh rate of 1000 Hz and the

collision detection thread does the computations for haptics force rendering.

www.manaraa.com

 113

Figure 7.2 Virtual Environment for Teleoperation of the PUMA Manipulator

The teleoperated robot consists of a 6-DoF Puma 560 manipulator. As explained

in Chapter 3, the Puma software controller is a form of a PD plus gravitational

compensation strategy controller. The robot arm is equipped with a modified QC MP

Orbit camera (an off-the-shelf USB camera) and a Sick DT60 laser range finder (See

Appendix G) as shown in Figure 7.3. In its original format, the camera was not suitable

to be mounted at the wrist of the robot arm and a new case was built to accommodate the

integrated circuit, the lens and cables. Also, the face detection and auto-zoom features of

the MP Orbit model were turned off in order to implement the calibration procedure

described in Chapter 5. This software runs on a Dual-core computer with Windows XP

OS. The sensors (the camera and Sick DT60 laser range finder) and a 4-DoF Barrett

Hand (Figure 7.3) were attached to the wrist of the Puma 560 manipulator.

www.manaraa.com

 114

Logitech MP

Orbit
TM

 CCD

Camera

Sick DT60 Laser

Range Finder

Phantom Omni

Haptic Device

3- Fingers Barrett

Hand

Figure 7.3 Sensory Suite Devices

Figure 7.4 shows the camera and the DT60 laser as they are mounted on the wrist

of the Puma 560 robot arm in the experimental setup. The Barrett hand is also shown.

Figure 7.4 Camera and the Sick DT60 Laser Range Finder Mounted at the Puma's End-

Effector

www.manaraa.com

 115

As shown in Figure 7.5, when the user operates the robot arm and locates an

object of interest, a stream of images of the object in the field of view is processed for

geometrical information computations.

Figure 7.5 Results of the Segmentation and Feature Extraction Processes

The segmentation and the feature extraction processes that take place are also shown in

Figure 7.5. As shown, the first window to the left presents the object as seen from the

camera. The crosshair lines, overlaid in the centered image, are used to emphasize the

centroid of the object of interest with respect to the screen coordinate system located at

the top-left corner of the viewport. The black and white image to the right is the image

resulted after applying the edge detection algorithm. As mentioned, the system includes

two algorithms for edge detection for added flexibility: Sobel and Canny. However,

only one of these edge detection algorithms must be active when the experiments are

www.manaraa.com

 116

performed. The Canny edge detector is used in the presented computations because of its

capabilities to smooth the image and to filter noise in the original image.

7.4 Haptic Interface and Cartesian Motion

 During teleoperation of the robot arm through the haptic interface, the real-time

controller receives the latest position and velocity updates from a virtual environment as

shown in Figure 7.6.

Figure 7.6 Virtual Environments and 3D Constraint Plane for Haptic Control

 As explained before, the user engages the Puma using the toggle buttons

available to the user. The Phantom Omni control software uses the input from the two

buttons located on the Phantom Omni stylus. The “white button” is used for

Constraint Plane

Linear Trajectory

Workspace

Virtual Solid Cube

www.manaraa.com

 117

teleoperating the Puma manipulator and the “blue button” for indexing. For instance, the

user can use the “blue button” on the stylus to index the virtual cube as shown in Figure

7.6. This way, the user can move the cube to the center of the screen when it is needed

and re-engage the manipulator with more screen space available in the virtual

environment.

7.5 Performance Measures

 The performance measures defined in this work are associated with the trajectory

tracking when position-based or velocity-based control modes are active. In this case,

two performance indices were used to measure the error associated with the position and

orientation in regular, scaled, and virtual fixture teleoperation. The performance

measures were defined by the "Absolute Position Error" (APE) and the "Absolute

Orientation Error" (AOE) indicators. The following list shows the different comparisons

made between the different APE and the AOE indicators for position and velocity based

control modes:

1. Autonomous, Force-based, and Motion-based Virtual Fixture

Teleoperation

2. Force-based Virtual Fixture, Regular, Scaled, and Virtual Fixture

Teleoperation

3. Autonomous, Velocity-Based Scaling, Velocity-Based Virtual Fixture,

and Force-based Virtual Fixture

4. Position-Based Regular teleoperation vs. Scaled teleoperation

5. Position-Based Regular teleoperation vs. Virtual Fixture

6. Position-Based Regular teleoperation vs. Autonomous

www.manaraa.com

 118

7. Velocity-Based Regular teleoperation vs. Scaled teleoperation

8. Velocity -Based Regular teleoperation vs. Virtual Fixture

9. Velocity -Based Regular teleoperation vs. Autonomous

Each task was repeated five times for each mode of operation and the calculations

for the associated indicators of the Absolute Position Error as well as the Absolute

Rotation Error were based on the following definitions.

7.5.1 The Absolute Position Error (APE)

 This performance measure defines the error between the commanded linear

position components (c

i

c

i

c

i zyx ,,) and the actual position achieved by the software

controller (fff zyx ,,). In other words, the APE is the Cartesian distance between the

desired and the actual end-effector position [70]. This measure is obtained by the

evaluation of Eq. 7.1 as follows:

     222 fc

i

fc

i

fc

ipos zzyyxxAPEerror  (7.1)

where (c

ix , c

iy , c

iz) are the current 3D coordinates of the robot‟s end-effector in the base

frame of the manipulator and (fx , fy ,
fz) are the achieved 3D coordinates of the drop-

off point (destination), also with respect to the base frame. Figure 7.7 shows the absolute

position error when the robot arm is commanded in simulation to follow a straight line

trajectory between the goal position and a target situated 15.0 cm away from the initial

position of the end-effector.

www.manaraa.com

 119

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Position Error

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E

Figure 7.7 Absolute Position Error (APE)

7.5.2 The Absolute Orientation Error (AOE)

 This performance measure defines the error related to the rotation matrix

elements  
ijr as described in Chapter 3. It specifies an equivalent single axis rotation

angle about a vector defined between the desired and the current rotation of the end-

effector of the robot arm [70]. Equation 7.2 defines the rotation error:

 


























 
 

2

1
cos 1

T

cf

ori

RRtrace
absAOEerror (7.2)

where

www.manaraa.com

 120

fR = (3x3) achieved rotation matrix at the destination (defined as the DROP-OFF

POINT) and

cR = (3x3) current rotation matrix evaluated at each time interval.

The trace function in Eq. (7.2) corresponds to the sum of the diagonal elements of

the product of the achieved fR and current rotation cR matrices, which is also the sum of

the eigenvalues of the product T

af RR . The angle expressed by
 













 

2

1T

cf RRtrace
specifies

an equivalent single angle rotation about a vector defined between the final and the

current orientation of the end-effector of the manipulator.

Figure 7.8 shows the results of the evaluation of Eq. 7.2 in an offline program in

MatLab. As before, absolute orientation error is calculated for the straight line trajectory

defined between the goal position and a target situated 15.0 cm away from the initial

position of the end-effector. As can be observed, the maximum orientation error obtained

is about 0.000001 radians. Given that the initial orientation was zero, it should be

expected that the orientation error to also be zero. However, accumulated errors in the

computation prevent this from happening in the simulation.

www.manaraa.com

 121

0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1

0

1
x 10

-4 Orientation Error

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E

Figure 7.8 Absolute Orientation Error (AOE)

The following steps describe the process after recording every user interaction in

autonomous and teleoperation control modes:

1. During regular teleoperation, the system does not use the external sensory input

for assisting the user's motion. For automatic, scaled and virtual fixture

teleoperation modes, once the object is located by using teleoperation mode, the

user pushes the Omni stylus button to lock the target and generate the desired

trajectory based on the sensory input. The user then teleoperates the robot arm

using autonomous, scaled, or virtual fixture mode until the gripper reaches the

target vicinity. Once the gripper reaches the target vicinity, the user teleoperates

the arm to adjust the gripper and grasp the object. Then, the user uses regular

www.manaraa.com

 122

teleoperation and points to the destination marker and pushes the Omni stylus

button again to lock the destination coordinates and move in the same fashion to

the drop-off point and release the object. In the case of force-based virtual fixture

a “stick force” effect keeps the user on the straight line trajectory generated using

the laser input.

2. The position (X, Y, Z) and the orientation angles   ,, of the end-effector of

the Puma manipulator, as well as, the real-time timing are recorded in text files by

the real-time application for all the experiments: autonomous, position-based, and

velocity-based (regular, scaled and virtual fixture) teleoperation. The initial

(START POINT), the pick-up point (PICKUP POINT) and the drop off (DROP

POINT) are also recorded in the text file.

3. The recorded data   ,,,,, ZYX are then transferred to the visualization

application in MatLab for plotting and further analysis. The transferring of the

angles is more efficient than transferring the assembled (3x3) rotation matrix as

registered by the real-time software.

4. For every recorded configuration, a 3D plot showing the 3D Cartesian position

(X, Y, Z) is obtained. It is important to mention that, even if the autonomous

mode is being tested, there is a small part of the trajectory for which the user

needs to switch back to regular teleoperation in order to re-orient and to avoid an

obstacle intentionally placed between the pick-up and drop points. Once the

obstacle is avoided, the user can switch back to autonomous, or any of the tested

modes. For instance, Figure 9.3 presents the case where the user switched back to

autonomous mode for the last portion of the path to the drop-off point.

www.manaraa.com

 123

5. The (X, Y, Z) coordinates of the end-effector from the START POINT to DROP

POINT are used to calculate the "Absolute Position Error", APE, as given by Eq.

(7.1). The result from Eq. (7.1) will then correspond to the traveled distance from

start to destination. This value can be used as an indicator to measure which

teleoperation mode can achieve the destination by traveling the lesser distance as

a function of time. For instance, this measure is used to compare the regular

teleoperation mode, which provides no assistance, to the autonomous, scaled,

force-based and motion-based virtual fixture teleoperation modes.

6. The calculation of the "Absolute Orientation Error" (AOE) is more involved.

First, the Euler's angles   ,, are used in the offline program to compute the

rotation matrix (the details are shown in Appendix E). Eq. (7.2) is then evaluated

at every sampled point recorded in the text file.

7. The APE and AOE measures of the tested control modes described in section 7.2

are plotted versus time and comparisons are made to determine the effectiveness

of the assistance provided to guide the user‟s motion to accomplish the task.

For both performance indicators the area under the curve represents a

measurement of the distance traveled (START POINT to the DROP POINT) and the time

to complete the pick-up-a-cup task. By comparing the area covered autonomous control

mode, force and motion-based virtual fixtures, and scaled teleoperation experiments it is

possible to determine the effectiveness of each form of control for completing the pick-

up-a-cup task and others ADL tasks. This area can be determined by numerically

integration of the APE curve using a fixed increment of time t as registered by the real-

www.manaraa.com

 124

time system. The smaller the area, the better the effectiveness of the method for

accomplishing the pick-up-a-cup task.

7.6 Summary

 In this chapter, the methodology followed to conduct the experiments as well as

the experimental testbed was described. The performance measures were also defined.

A pick-up-a-cup task, a common activity of daily living (ADL), is used as the testing

task. Eight testing scenarios were defined for position-based and velocity-based control

modes for later analysis. The performance corresponding to autonomous control, regular,

scaled, force-based and motion-based virtual fixture teleoperation modes is defined in

terms of the “Absolute Position Error” (APE) and the “Absolute Orientation Error”

(AOE). The area under APE curve can be used as a qualitative indicator for comparing

each of the operation modes. Results including these comparisons are presented later in

Chapter 9.

www.manaraa.com

 125

Chapter 8

Virtual Reality Simulation Testing

8.1 Introduction

 In robotics, once the governing equations of robot arm motion are defined in

terms of the virtual object variables, a computer-generated version of the real robot arm

can be used for testing the control strategies without the dangers of damaging the

hardware. Virtual Reality, VR, provides a widely accepted computer interface that

enables realistic simulations of physical systems.

In the case of a robot arm, both the forward and inverse kinematics solutions can

be defined in terms of the joint angles of the virtual reality standard transformations

defined by the scripting language known as Virtual Reality Markup Language (VRML).

In practice, the appropriate mapping of the Cartesian axes between the reference frames

defined for the robot arm and the haptic device can be easily visualized in the virtual

environment by moving the haptic stylus or through a graphical user interface. This way,

the inherent complexity of the design and testing of a real-time controller with a haptic

interface directly on the physical system can be reduced by performing probe of concepts

of many of the programming tasks with realistic and believable visualizations and

simulations. In this chapter, the haptic control of the Puma 560 model using the VR

techniques is presented as well as the communication protocol developed in order to

resolve the high timing demands of the haptic loop and the integration of the different

programming workspaces.

www.manaraa.com

 126

8.2 Virtual Reality Simulation of the Puma 560 Manipulator

 Virtual Reality simulation of the robot arm enables the design and testing of

sophisticated control strategies in a "proof of concept" sense without the dangers of

damaging the real robot arm. As discussed in Chapter 4, the teleoperation tasks are

executed through the use of the Phantom Omni for force feedback and the Puma 560

robot arm interface which has a very different kinematics compared to the Omni. The

resulting transformations from the evaluation of their respective kinematics equations

need to be mapped (in joint space or Cartesian space). For simulation of the VR robot

arm motion, both the forward and inverse kinematics solutions can be defined in terms of

the joint angles of the virtual reality transformations (known as a "Transform" object in

the VRML script language). The appropriate mapping of the Cartesian axes between the

reference frames defined for the robot arm and the haptic device can be easily visualized

in the virtual environment.

In this work, the visualizations of the motion of the Puma 560 (with and without

haptic control) were realized using VR toolbox as shown in Figure 8.1. The VR toolbox

is an add-in library used for the creation and visualization of virtual models within the

MatLab/Simulink workspace. This toolbox allows complete control of the scripting files

associated to the different parts of the robot construction (links, joints, base stand, and

end-effector). The VR toolbox follows the VRML97 standard which means that 3D

CAD modeling software such as SolidWorks can be used to create the solid models. The

CAD model (parts and assembling) can then be ported to the VRML97 format following

a straightforward procedure.

www.manaraa.com

 127

Figure 8.1 Virtual Reality Model of the Puma 560 Robot Arm

8.3 Control of the VR Model of the Puma 560 Manipulator

 The VR model of the Puma 560 can be driven in two different ways. One way is

using a simple graphical user interface (GUI) as shown in Figure 8.2. This option

enables the user to perform the virtual simulations of the robot arm using purely robotic

mode (without the haptic interface). The GUI was developed as a control panel with

toggle buttons and scroll bars for this form of operation. As shown, the graphical user

interface (GUI) presents toggle buttons for the selection of the type of control, either joint

or Cartesian space. This GUI provides an intuitive interface to the user and the toggle

www.manaraa.com

 128

bottom action prevents from trying to activate the two types of available control modes

simultaneously.

Figure 8.2 Control Panel for Joint and Cartesian Space VR Simulations

If the "Joint Control" toggle bottom is activated on the control panel, the scroll

bars can be used to change each individual joint angle value in increments of 1 deg. The

minimum value of the scroll bar is zero and the maximum value corresponds to the joint

limit as defined in the real robot arm configuration files. In this case, the homogenous

transformation matrices are evaluated (See Appendix A) and the results are assigned to

the corresponding joint transformation matrix in the VRML script file. On the other

hand, if the "Cartesian Control" toggle bottom is activated, the user is able to move the

www.manaraa.com

 129

end-effector along the 3D axis directions (X,Y,Z) and the solution of the inverse

kinematics problem is required. In this case, two solutions were implemented. The first

one is a "closed-form" solution available for the Puma560 and the resolved-rate algorithm

based on the inverse Jacobian of the robot arm. This solution is more convenient when a

closed-form solution is not available, as it is the case for kinematically redundant-robot

arms. The details of this algorithm can be found in Chapter 3. The second one is using

the haptic device for teleoperation of the virtual model of the robot arm as shown in

Figure 8.3. In this case, the user is provided with a virtual environment where a solid

object (red) is displayed and the user can "touch" with the Omni's stylus. A separate

window is then shown with the VR model of the Puma 560 tracking the "haptic tip" of

the Phantom Omni device when the cube is "grasped" with the stylus.

Figure 8.3 Haptic-VR Puma 560 Graphical User Interface

www.manaraa.com

 130

8.4 VR Linear Trajectory Simulation

 A major benefit of the VR toolbox in MatLab, in addition to the visualization

capabilities, is the availability of robust built-in numerical functions for linear algebra,

inverse and pseudo-inverse algorithms, optimization and singular value decomposition,

among others. Taking advantage of these capabilities and, in preparation for the

implementation of the real-time trajectory generation in QNX, a MatLab script program

was developed in order to compare the results from the VR simulation and the actual

physical implemented in C++ code.

 The algorithm for the linear trajectory is based on the Equivalent Single Axis

Rotation Method with provisions taken to avoid representational singularities (See

Appendix B). Once the linear trajectory is generated, the required torques to drive the

arm to the final destination needs to be computed. As discussed in Chapter 3, the

implementation of the resolved-rate control technique involves the computation of the

Jacobian and the inverse of the Jacobian of the robotic arm.

In QNX, all required numerical solutions must be implemented in C++ and the

results need to be validated. The availability of the results from the simulation makes it

easier to debug potential errors during the computation of the different numerical

algorithms in C++ running under QNX O/S.

 In MatLab, the script requires a homogenous transformation matrix defining the

initial position and orientation of the end-effector and the final transformation matrix

defining the desired (goal) destination as input arguments. Both transformation matrices

are described relative to the base reference frame of the manipulator. Also, the script

expects the desired linear speed of the end-effector as an input argument (0.2 m/s in this

www.manaraa.com

 131

simulation). The following results were obtained by commanding the VR model of the

Puma 560 to travel from its predefined ready (initial) position to the predefined

destination. The corresponding homogenous transformation matrices are:

























0000.10000.00000.00000.0

3387.09540.02907.00736.0

6254.02365.05785.07806.0

1158.01843.07621.06206.0

0

initialT (8.1)

























0000.10000.00000.00000.0

4818.09540.02907.00736.0

6609.02365.05785.07806.0

1434.01843.07621.06206.0

0

goalT (8.2)

 The specified initial and goal transformations correspond to 15.0 cm displacement

of the end effector from its initial position along its own z-axis. Figure 8.4 shows the

required joint angles of the manipulator and Figure 8.5 shows the commanded linear

trajectory. This is an important validation phase before using the Phantom Omni

differential transformations are used to command motion actions to the Puma

manipulator.

www.manaraa.com

 132

0 0.2 0.4 0.6 0.8
-1.6

-1.55

-1.5

time, (sec)

J
o
in

t1
 a

n
g
le

,
(r

a
d
)

0 0.2 0.4 0.6 0.8

-3.5

-3

time, (sec)

J
o
in

t2
 a

n
g
le

,
(r

a
d
)

0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

time, (sec)

J
o
in

t3
 a

n
g
le

,
(r

a
d
)

0 0.2 0.4 0.6 0.8
-0.7

-0.6

-0.5

-0.4

-0.3

time, (sec)

J
o
in

t4
 a

n
g
le

,
(r

a
d
)

0 0.2 0.4 0.6 0.8
-0.45

-0.4

-0.35

-0.3

-0.25

time, (sec)

J
o
in

t5
 a

n
g
le

,
(r

a
d
)

0 0.2 0.4 0.6 0.8
-0.4

-0.3

-0.2

-0.1

0

time, (sec)

J
o
in

t6
 a

n
g
le

,
(r

a
d
)

Figure 8.4 Required Joint Angles for the Predefined Linear Trajectory Path

0.115
0.12

0.125
0.13

0.135
0.14

0.145
0.15

0.62

0.63

0.64

0.65

0.66

0.67

0.68

-0.5

-0.48

-0.46

-0.44

-0.42

-0.4

-0.38

-0.36

-0.34

-0.32

X-axis

end-effector disp. = 15.0 cm

Y-axis

Z
-a

x
is

Figure 8.5 End-Effector Displacements from Initial to Goal Position

www.manaraa.com

 133

8.5 Haptic Feedback and Assist Functions in Simulation

 Figure 8.6 shows a simulation of a haptically rendered cube and Bezier-type curve

trajectory where features of OpenGL, HLAPI and HDAPI libraries are combined for the

simulation of a teleoperation task. The solid cube was created using graphic functions

available through the OpenGL graphic and HLAPI libraries. On the other hand, the

Bezier points were generated using the classical algorithm in C++, and then, displayed

using OpenGL vertex structures.

Figure 8.6 Bezier Curve Trajectory and Haptically Rendered Cube

During the interaction, the user will approach the Bezier trajectory. The

assistance provided at this instant is a "stick" friction effect, running at the haptic servo

loop update rates, which is activated when the user is at a close proximity (a distance

www.manaraa.com

 134

equivalent to the radius of the sphere representing the haptic tip in the virtual

environment) to the trajectory and a spring-damper force activated once the user is

following the path. In other words, the haptic interface provides guidance by

constraining the user‟s motion along the trajectory. The resultant force is transmitted to

the user's hands through the Phantom Omni using the method explained in Chapter 4. In

this simulation, the haptic device is used for sensing proximity and for actuation in the

form of force feedback to the user's hand. Typical "stick" friction forces are shown in

Figure 8.7. Both original and filtered data are shown.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

t (s))

F
 (

N
)

F vs t

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5
Original Data

Filtered Data

Figure 8.7 Experimental Data of Forces Resulting from a Typical Interaction

t (s)

t (s)

F (N)

F (N)

www.manaraa.com

 135

8.6 Comments on the Haptic and VR Model Simulations

 The integration of the VR toolbox with the different motion algorithms to drive

the VR robot arm model in pure robotic mode occurs within the same MatLab

workspace. Therefore, there is no communication issues involved. However, when the

haptic control is integrated with the virtual reality environment (solid cube created with

OpenGL) and the VR toolbox in MatLab, a different approach is required in order to

make the virtual simulations responsive and stable at both ends.

 As discussed in Chapter 4, the Phantom Omni model uses the OpenHaptics

libraries for the Windows OS. To have access to those libraries, the C++ programming

language is used. The VR simulation running on the MatLab environment needs to be

interfaced with the HDAPI/HLAPI libraries for haptically rendering the OpenGL virtual

objects in C++. A multithreaded application interface was developed to make the

separate workspaces to communicate back and forth for data interchange. This

component of the application is based on UDP sockets running as separate thread and the

technique is further explained next.

8.7 Communication Protocol

 As previously stated, the VR simulation and the haptic control software run in two

different workspaces. A network protocol based on User Datagram Packets (UDP) was

developed in order to interface the MatLab workspace used for the VR simulations and

the C++ programming language used for the haptic control. A single packet contains the

joint angles and the Cartesian position of the Phantom Omni‟s end effector needed to be

www.manaraa.com

 136

transferred to the MatLab workspace. As stated in Chapter 3, the protocol design includes

features to deal with the possibility of data loses or out of order sequences.

For this particular implementation, a time-stamp variable was used to prevent

these problems. The interfacing of haptic control and the VR simulation software

implements four (4) main threads in C++ running simultaneously with different update

rates. The different threads are:

1. The graphics thread.

2. The haptic loop thread.

3. The collision-detection thread.

4. The communication thread

 Of these four threads, only the communication thread implementation is different

from the physical simulation (as discussed in Chapter 3). This is due to the fact that

MatLab does not provide functionalities for handling real-time clocks or synchronization

mechanisms. The solution was to use regular timers and standard UDP-based socket

programming techniques in the MatLab programming environment.

8.8 Comments on the Communication Protocol in the Simulation Program

The communication thread provided a stable and acceptable response time for

interfacing VR simulations with the Phantom Omni controller when used for short

periods of time. However, when the interface is used for extended time, the

communication between the C++ application and the MatLab simulation is inconsistent

and unreliable. The dynamic data exchange API responsible for transferring the UDP

packets between the MatLab workspace and the sockets program in C++ fails to meet the

www.manaraa.com

 137

high timing constraints of the Phantom Omni and, at the same time, to update the virtual

environment during the simulation. However, the interfacing between the VR simulation

in MatLab and the OpenHaptics libraries in C++ creates a realistic look and appearance

of the robot arm as well as a friendlier graphical user interface (GUI) for testing and

debugging.

8.9 Summary

 The use of the VR simulation provides a flexible visualization tool for testing the

purely robotic control mode as well as the haptically driven manipulator. The virtual

simulations allow validating the actual algorithms for teleoperation developed in C++ and

the QNX RTOS. The capability of matching the homogeneous transformations resulting

from the kinematics analysis and the transformations programmed in VRML scripts

permits to experiment and develop more efficient interfaces and communication

techniques. The implementation as well as the debugging processes of the different

control algorithms and the required numerical approximation methods, both closed-form

and resolved-rate, are greatly facilitated due the built-in linear algebra scripts available in

MatLab and the visualization facilities available in the Virtual Reality Toolbox.

www.manaraa.com

 138

Chapter 9

Results and Discussion

9.1 Introduction

To evaluate the assistance enabled by the system to guide the user‟s motion, the

proposed model was tested in eight different modes of operation. These modes consisted

of regular, scaled and virtual fixtures using position based and velocity based control,

autonomous mode, and force-based virtual fixture (for a total of 8), as described in

Chapter 7. Each of these modes of operation comprised five repetitions of each

experiment, for a total of forty (40) experiments. Three users executed these experiments

for a total of 120 experimental data sets.

This Chapter presents the results of these experiments. Results and discussions of

the virtual reality simulation are also presented in this chapter.

9.2 Interactive Simulations Results

 The experiments were conducted based on the methodology presented in section

7.2. In all these experiments, when position-based control is activated, the user

teleoperates the Phantom Omni interface to move the PUMA to the desired position and

orientation. For instance, in order to select a target object using the laser pointer, the user

will move the Omni tip to a configuration so that the PUMA end-effector points to the

target object. On the other hand, when velocity-based control is activated, the Phantom

Omni interface position determines the Puma end-effector speed and direction. In other

www.manaraa.com

 139

words, when velocity control is used, the Puma end-effector speed changes

proportionally to the Phantom Omni interface changing position. When the specified

velocity is reached, it is maintained until the command from the Omni is changed. Under

velocity control mode, the user will move the Omni‟s end-effector once to select a

direction and speed for the Puma end-effector. Then, the user will hold the Omni‟s end-

effector steady until the gripper mounted on the Puma is close to the target object, then

move the Omni‟s end-effector to the center in order to stop close the target. The

definitions of these experiments are described as follows:

a) Regular Teleoperation Mode: the user does not receive any assistance from the

sensor-based assist system.

b) Scaled Teleoperation Mode: the user input is scaled 3x when it is along the

trajectory generated by the laser, and 0.2X when it is perpendicular to the

trajectory.

c) Virtual Fixture Teleoperation Mode: all positions and orientations coming from

the user input are locked except the position parallel to the trajectory, which is

scaled to 3X.

d) Autonomous Mode: the user points the laser in the direction of the target object

and commands the Puma manipulator to follow the trajectory.

e) Force-based Virtual Fixture Mode: a “stick” force effect is used for maintaining

the user moving along the straight line trajectory defined by the “line of sight”

using the laser range finder.

www.manaraa.com

 140

 Table 9.1 shows collected data of the time to complete the pick-up-a-cup task for

ten repetitions using autonomous, regular, scaled and virtual fixtures using position based

and velocity based control, and force-based virtual fixture teleoperation modes. The

variables are defined as follows:

1. C1 = autonomous control mode

2. C2 = position-based regular teleoperation mode

3. C3 = position-based scaled teleoperation mode

4. C4 = position-based virtual fixture constraint

5. C5 = velocity-based regular teleoperation

6. C6 = velocity-based scaled teleoperation

7. C7 = velocity-based virtual fixture constraint

8. C8 = force-based virtual fixture constraint

Table 9.1 Completion Time (in seconds) for the Pick-up-a-cup Task

Experiment

No.

C1 C2 C3 C4 C5 C6 C7 C8

1 86.549 82.058 69.243 74.322 71.230 82.288 78.382 80.949

2 86.214 88.105 102.300 92.718 80.681 79.143 79.990 66.764

3 98.342 87.114 95.975 79.582 70.778 81.129 80.849 68.850

4 85.255 92.069 69.630 86.085 74.315 88.941 76.833 79.776

5 94.995 77.443 71.129 53.457 63.775 71.469 64.575 68.552

6 68.592 86.214 109.892 78.522 76.064 84.615 84.835 78.213

7 73.647 88.105 90.282 96.207 93.846 77.063 74.046 84.389

8 65.670 94.862 91.182 98.683 76.953 83.948 82.158 77.473

9 67.654 109.590 89.762 101.060 60.270 78.322 64.525 94.596

10 65.097 88.848 84.878 80.340 62.398 67.932 71.958 79.910

www.manaraa.com

 141

Table 9.2 Completion Time Descriptive Statistics

Variable N N* Mean SE

Mean

Std.

Dev.

Minimum Q1 Median Q3 Maximum

C1 10 0 79.20 3.96 12.54 65.10 67.16 79.45 88.66 98.34

C2 10 0 89.44 2.71 8.57 77.44 85.18 88.10 92.77 109.59

C3 10 0 87.43 4.40 13.93 69.24 70.75 90.02 97.56 109.89

C4 10 0 84.10 4.50 14.24 53.46 77.47 83.21 96.83 101.06

C5 10 0 73.03 3.14 9.93 60.27 63.43 72.77 77.89 93.85

C6 10 0 79.49 1.98 6.25 67.93 75.66 80.14 84.12 88.94

C7 10 0 75.82 2.22 7.02 64.53 70.11 77.61 81.18 84.84

C8 10 0 77.95 2.65 8.38 66.76 68.78 78.99 81.81 94.60

Data from Table 9.2 were used to verify if the average time to complete the pick-

up-a-cup task can be used as predictive parameter. For this purpose, a “boxplot” type of

chart was used. The “boxplot” is a standard graphical tool used in descriptive statistics,

to show the variability of a set of input variables without assuming any probability

distribution of the underlying data [71].

The boxplot in Figure 9.1 shows that the time parameter will be a poor parameter

if it is used as the only prediction parameter to identify which of the methods of control

used to execute the task would perform better for this task. Also shown in Figure 9.1, is

that the variability in the completion time of the pick-up-a-cup task is too large when

comparing the different modes described as C1 to C8. Therefore, a different method of

evaluation of results must be used to better explain the performance of the sensor-based

assistive system.

www.manaraa.com

 142

C8C7C6C5C4C3C2C1

110

100

90

80

70

60

50

C
o

m
p

le
ti

o
n

 T
im

e
 (

S
e

c
o

n
d

s
)

Boxplot of C1, C2, C3, C4, C5, C6, C7, C8

Figure 9.1 Boxplot of Autonomous (C1), Position-based Regular Teleoperation (C2),

Position-based Scaled Teleoperation (C3), Position-based Virtual Fixture (C4), Velocity-

Based Regular Teleoperation (C5), Velocity-Based Scaled Teleoperation (C6), Velocity-

Based Virtual Fixture (C7), Force-based Virtual Fixture (C8)

In section 7.5 a definition of performance indicators was presented. By using

these indicators, eight combinations of the operation modes can be defined. Each mode

of operation was compared, and the associated Absolute Position Error (APE) and the

Absolute Orientation Error (AOE) were plotted for one repetition of the experiment of

the pick-up-a-cup task.

A qualitative assessment of results when the performance indicators were used is

shown in Figures 9.2 to 9.20 for position-based control and Figures 9.21 to 9.39 for

velocity-based control. The figures show the comparison between each of the four modes

and the corresponding Absolute Position and Orientation Errors. From this qualitative

(*) is an outlayer point

www.manaraa.com

 143

comparison of the absolute errors in position and orientation, it is recognized that 1)

scaling and virtual fixture teleoperation modes perform better than regular teleoperation

and 2) autonomous mode performs better than regular, scaled, and virtual fixture either in

position-based or velocity-based control forms. These are expected results from an

assistive system where the user‟s motion is guided during the task execution.

9.2.1 Position-Based Control Interactive Simulations Results

The position-based teleoperation is the default control mode of the telerobotic

system. In this case, the Phantom Omni is moved in its workspace by the user and

transformation matrices are computed by solving the forward kinematics problem. The

resulting transformations and then mapped to the PUMA base frame following the

procedure discussed in section 4.2.2.

Although the same task was performed using different modes of operation, when

Regular teleoperation mode was used, the trajectory was not as smooth and fast as it was

in the case of Autonomous, Scaled and Virtual Fixture modes (Figures 9.2 to 9.4). Also,

the trajectory is longer in Regular mode. Nevertheless, the trajectory in the Autonomous

compared to Virtual Fixture mode and also in the Scaled compared to Virtual Fixture, is

similar (Figures 9.5 and 9.7). When comparing Autonomous to Scaled, the trajectory is

shorter and smoother for the Autonomous mode (Figures 9.6). This latter is mostly due to

the fact that in Autonomous mode the input from the user is partly removed and only

used for re-orienting the end-effector of the manipulator. These same results were

obtained when comparing the Absolute Position Error (Figures 9.8 to 9.13).

www.manaraa.com

 144

As for the Absolute Orientation Error, the errors in the Regular mode for the

complete task are mostly higher than the Autonomous, Scaled and Virtual Fixture

(Figures 9.14 to 9.16). In the Autonomous and Virtual Fixture modes, some portions of

the errors are constant (Figures 9.16 to 9.20). The explanation for this behavior is that

those portions represent the sections of the trajectory where the orientation of the end

effector of the Puma manipulator remains unchanged.

-0.4

-0.3

-0.2
-0.1

0

0.1

0.65

0.7

0.75

0.8

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05 START POINT

PICKUP POINT

X-axis

Position-based Control Mode

DROP POINT

Y-axis

Z
-a

xi
s

Regular Teleop.

Scaled-Teleop.

 Figure 9.2 Position-Based Regular Teleoperation vs. Scaled Teleoperation

www.manaraa.com

 145

-0.3

-0.2

-0.1

0

0.1

0.6

0.65

0.7

0.75

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
START POINT

PICKUP POINT

X (m)

Position-based Control Mode

Y (m)

DROP POINT

Z
 (

m
)

Regular Teleop.

Autonomous

Figure 9.3 Position-Based Regular Teleoperation vs. Autonomous Control

-0.3
-0.2

-0.1
0

0.1

0.6

0.65

0.7

0.75

0.8

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

START POINT

X (m)

PICKUP POINT

Position-based Control Mode

DROP POINT

Y (m)

Z
 (

m
)

Regular Teleop.

Virtual Fixture Teleop.

Figure 9.4 Position-Based Regular Teleoperation vs. Virtual Fixture Teleoperation

www.manaraa.com

 146

-0.2

-0.1

0

0.1

0.6

0.65

0.7

0.75

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

PICKUP POINT

START POINT

X (m)

Position-based Control Mode

DROP POINT

Y (m)

Z
 (

m
)

Virtual Fixture Teleop.

Autonomous

Figure 9.5 Position-Based Virtual Fixture Teleoperation vs. Autonomous Control

-0.4
-0.3

-0.2

-0.1
0

0.1

0.6

0.65

0.7

0.75

0.8

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05 START POINT

PICKUP POINT

X (m)

Position-based Control Mode

DROP POINT

Y (m)

Z
 (

m
)

Scaled Teleop.

Autonomous

Figure 9.6 Position-Based Scaled Teleoperation vs. Autonomous Control

www.manaraa.com

 147

-0.4
-0.3

-0.2
-0.1

0
0.1

0.6

0.65

0.7

0.75

0.8

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05 START POINT

PICKUP POINT

X (m)

Position-based Control Mode

DROP POINT

Y (m)

Z
 (

m
)

Scaled Teleop.

Virtual Fixture Teleop.

Figure 9.7 Position-Based Scaled Teleoperation vs. Virtual Fixture Teleoperation

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Position-based Control Mode

Regular Teleop.

Scaled-Teleop.

Figure 9.8 Absolute Position Error in Position-Based Regular vs. Scaled Teleoperation

www.manaraa.com

 148

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Position-based Control Mode

Regular Teleop.

Autonomous

Figure 9.9 Absolute Position Error in Position-Based Regular Teleoperation vs.

Autonomous Control

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Position-based Control Mode

Regular Teleop.

Virtual Fixture Teleop.

Figure 9.10 Absolute Position Error in Position-Based Regular vs. Virtual Fixture

Teleoperation

www.manaraa.com

 149

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Position-based Control Mode

Virtual Fixture Teleop.

Autonomous

Figure 9.11 Absolute Position Error in Position-Based Virtual Fixture Teleoperation vs.

Autonomous Control

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Position-based Control Mode

Scaled Teleop.

Autonomous

Figure 9.12 Absolute Position Error in Position-Based Scaled Teleoperation vs.

Autonomous Control

www.manaraa.com

 150

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Position-based Control Mode

Scaled Teleop.

Virtual Fixture Teleop.

Figure 9.13 Absolute Position Error in Position-Based Scaled vs. Virtual Fixture

Teleoperation

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Position-based Control Mode

Regular Teleop.

Scaled-Teleop.

Figure 9.14 Absolute Orientation Error in Position-Based Regular vs. Scaled

Teleoperation

www.manaraa.com

 151

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Position-based Control Mode

Scaled Teleop.

Autonomous

Figure 9.15 Absolute Orientation Error in Position-Based Scaled-Teleoperation vs.

Autonomous Control

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Position-based Control Mode

Regular Teleop.

Autonomous

Figure 9.16 Absolute Orientation Error in Position-Based Regular Teleoperation vs.

Autonomous Control

www.manaraa.com

 152

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Position-based Control Mode

Regular Teleop.

Virtual Fixture Teleop.

Figure 9.17 Absolute Orientation Error in Position-Based Regular vs. Virtual Fixture

Teleoperation

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Position-based Control Mode

Virtual Fixture Teleop.

Autonomous

Figure 9.18 Absolute Orientation Error in Position-Based Virtual Fixture Teleoperation

vs. Autonomous Control

www.manaraa.com

 153

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Position-based Control Mode

Scaled Teleop.

Autonomous

Figure 9.19 Absolute Orientation Error in Position-Based Scaled Teleoperation vs.

Autonomous Control

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Position-based Control Mode

Scaled Teleop.

Virtual Fixture Teleop.

Figure 9.20 Absolute Orientation Error in Position-Based Scaled vs. Virtual Fixture

Teleoperation

www.manaraa.com

 154

9.2.2 Velocity-Based Control Interactive Simulations Results

In this mode of teleoperation, the PUMA end-effector speed changes

proportionally to the Phantom Omni changing position. The user will move the Omni‟s

end-effector once to select a direction and speed for the PUMA end-effector. As

discussed in section 4.2.3, the user holds the Phantom Omni‟s end-effector steady to fix

the speed until the gripper is in the vicinity of the target object. Then, the user moves the

Phantom Omni‟s end-effector back to its initial position for stopping close to the target.

The testing results for the Velocity-Based control simulations are very similar to

those obtained for the Position-based control simulations. Figures 9.21 to 9.23 show that

the trajectory in Regular teleoperation mode is not as smooth, fast and shorter as it is

Autonomous control mode and Scaled, Virtual Fixture control modes. The trajectories in

the Autonomous, Virtual Fixture and Scaled modes are similar (Figures 9.24 and 9.26).

And comparing Autonomous to Scaled, the trajectory is shorter and smoother for the

Autonomous mode (Figures 9.25). This is also the case for the Absolute Position Error

(Figures 9.27 to 9.32).

As for the Absolute Orientation Error, for the Velocity-Based control, the errors

in the Regular mode for the complete task are mostly smaller than for the Autonomous,

Scaled and Virtual Fixture (Figures 9.33 to 9.35). Similarly, the orientation errors for

the Virtual Fixture and Scaled modes are smaller than for the Autonomous (Figures 9.36

to 9.39). This can be explained by the condition imposed in the velocity control mode

for which a particular Omni end-effector position does not have to remain mapped to a

specific configuration of the slave, but only to the magnitude and direction of the slave of

www.manaraa.com

 155

the end-effector velocity. This means that there is no need to precisely reorient the

gripper for grasping when the velocity control mode is active.

-0.3

-0.2

-0.1
0

0.1

0.2

0.6

0.65

0.7

0.75

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05 START POINT

X (m)

PICKUP POINT

Velocity-based Control Mode

DROP POINT

Y (m)

Z
 (

m
)

Regular Teleop.

Scaled Teleop.

Figure 9.21 Velocity-Based Regular Teleoperation vs. Scaled Teleoperation

www.manaraa.com

 156

-0.3

-0.2

-0.1

0

0.1

0.2

0.6

0.65

0.7

0.75

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
START POINT

X (m)

PICKUP POINT

Velocity-based Control Mode

DROP POINT

Y (m)

Z
 (

m
)

Regular Teleop.

Autonomous

Figure 9.22 Velocity-Based Regular Teleoperation vs. Autonomous Control

-0.3
-0.2

-0.1
0

0.1
0.2

0.55

0.6

0.65

0.7

0.75

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

X (m)

START POINT

PICKUP POINT

Velocity-based Control Mode

DROP POINT

Y (m)

Z
 (

m
)

Regular Teleop.

Virtual Fixture Teleop.

Figure 9.23 Velocity-Based Regular Teleoperation vs. Virtual Fixture Teleoperation

www.manaraa.com

 157

-0.2

-0.1

0

0.1

0.55

0.6

0.65

0.7

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

START POINT

PICKUP POINT

X (m)

Velocity-based Control Mode

DROP POINT

Y (m)

Z
 (

m
)

Virtual Fixture Teleop.

Autonomous

Figure 9.24 Velocity-Based Virtual Fixture Teleoperation vs. Autonomous Control

-0.2

-0.1

0

0.1

0.6

0.65

0.7

0.75

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

START POINT

PICKUP POINT

X (m)

Velocity-based Control Mode

DROP POINT

Y (m)

Z
 (

m
)

Scaled Teleop.

Autonomous

Figure 9.25 Velocity-Based Scaled Teleoperation vs. Autonomous Control

www.manaraa.com

 158

-0.2

-0.1

0

0.1

0.55

0.6

0.65

0.7

0.75

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

START POINT

PICKUP POINT

X (m)

Velocity-based Control Mode

DROP POINT

Y (m)

Z
 (

m
)

Scaled Teleop.

Virtual Fixture Teleop.

Figure 9.26 Velocity-Based Scaled Teleoperation vs. Virtual Fixture Teleoperation

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Velocity-based Control Mode

Regular Teleop.

Scaled Teleop.

Figure 9.27 Absolute Position Error in Velocity-Based Regular vs. Scaled Teleoperation

www.manaraa.com

 159

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Velocity-based Control Mode

Regular Teleop.

Autonomous

Figure 9.28 Absolute Position Error in Velocity-Based Regular Teleoperation vs.

Autonomous Control

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Velocity-based Control Mode

Regular Teleop.

Virtual Fixture Teleop.

Figure 9.29 Absolute Position Error in Velocity-Based Regular vs. Virtual Fixture

Teleoperation

www.manaraa.com

 160

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Velocity-based Control Mode

Scaled Teleop.

Autonomous

 Figure 9.30 Absolute Position Error in Velocity-Based Virtual Fixture Teleoperation vs.

Autonomous Control

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Velocity-based Control Mode

Scaled Teleop.

Autonomous

Figure 9.31 Absolute Position Error in Velocity-Based Scaled Teleoperation vs.

Autonomous Control

www.manaraa.com

 161

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Velocity-based Control Mode

Scaled Teleop.

Virtual Fixture Teleop.

Figure 9.32 Absolute Position Error in Velocity-Based Scaled vs. Virtual Fixture

Teleoperation

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Velocity-based Control Mode

Regular Teleop.

Scaled Teleop.

Figure 9.33 Absolute Orientation Error in Velocity-Based Regular vs. Scaled

Teleoperation

www.manaraa.com

 162

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Velocity-based Control Mode

Regular Teleop.

Autonomous

Figure 9.34 Absolute Orientation Error in Velocity-Based Scaled-Teleoperation vs.

Autonomous Control

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Velocity-based Control Mode

Regular Teleop.

Virtual Fixture Teleop.

Figure 9.35 Absolute Orientation Error in Velocity-Based Regular Teleoperation vs.

Autonomous Control

www.manaraa.com

 163

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Velocity-based Control Mode

Regular Teleop.

Virtual Fixture Teleop.

Figure 9.36 Absolute Orientation Error in Velocity-Based Regular vs. Virtual Fixture

Teleoperation

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Velocity-based Control Mode

Virtual Fixture Teleop.

Autonomous

Figure 9.37 Absolute Orientation Error in Velocity-Based Virtual Fixture Teleoperation

vs. Autonomous Control

www.manaraa.com

 164

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Velocity-based Control Mode

Scaled Teleop.

Autonomous

Figure 9.38 Absolute Orientation Error in Velocity-Based Scaled Teleoperation vs.

Autonomous Control

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Velocity-based Control Mode

Scaled Teleop.

Virtual Fixture Teleop.

Figure 9.39 Absolute Orientation Error in Velocity-Based Scaled vs. Virtual Fixture

Teleoperation

www.manaraa.com

 165

 The effectiveness of the assistive system during the execution of the pick-up-a-

cup task presented in Figures 9.2 to 9.39 is summarized in Figures 9.40 to 9.45. The

testing of force based virtual fixture is included in these figures as an additional

parameter of comparison between the different modes of teleoperation.

A comparison of the APE and the AOE indicators for the force-based and position-based,

regular (teleoperation without assistance) and scaled teleoperation modes is shown in

Figures 9.40 and 9.41. The APE and AOE comparisons corresponding to Regular

(Teleoperation without Assistance), Position-based Scaled Teleoperation (Motion-based

Scaling), Position-based Virtual Fixture (Motion-based Virtual Fixture) and Force-based

Virtual Fixture are depicted in Figures 9.42 and 9.43.

Figures 9.44 and 9.45 show the APE and AOE indicators for Autonomous,

Velocity-Based Scaling, Velocity-Based Virtual Fixture and Force-based Virtual Fixture.

As can be observed, Autonomous mode performs better than any other method, as shown

in previous figures. The assistance provided in the form of scaled and virtual fixture is

shown to be better than regular teleoperation (without assistance), as expected. The

force-based virtual fixture is more effective in assisting the user‟s motion along the

straight line trajectory when compared to motion-based virtual fixture.

www.manaraa.com

 166

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Force Feedback

Position-based Regular

Position-based Scaled

Figure 9.40 APE for Force, Position-Based Regular and Scaled Teleoperation

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Force Feedback

Position-based Regular

Position-based Scaled

Figure 9.41 AOE for Force, Position-Based Regular and Scaled Teleoperation

www.manaraa.com

 167

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Teleoperation Without Assistance

Motion-based Scaling

Motion-based Virtual Fixture

Force-based Virtual Fixture

Figure 9.42 APE for Teleoperation without Assistance, Motion-based Scaling, Motion-

based Virtual Fixture and Force-based Virtual Fixture

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Teleoperation Without Assistance

Motion-based Scaling

Motion-based Virtual Fixture

Force-based Virtual Fixture

Figure 9.43 AOE for Teleoperation without Assistance, Motion-based Scaling, Motion-

based Virtual Fixture and Force-based Virtual Fixture

www.manaraa.com

 168

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
,

(m
)

Autonomous

Velocity-based Scaling

Velocity-based Virtual Fixture

Force-based Virtual Fixture

Figure 9.44 APE for Autonomous, Velocity-Based Scaling, Velocity-Based Virtual

Fixture and Force-based Virtual Fixture

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, (sec)

A
b
s
o
lu

te
 O

ri
e
n
ta

ti
o
n
 E

rr
o
r,

 A
O

E
,

(r
a
d
)

Teleoperation Without Assistance

Motion-based Scaling

Motion-based Virtual Fixture

Force-based Virtual Fixture

Figure 9.45 AOE for Autonomous, Velocity-Based Scaling, Velocity-Based Virtual

Fixture and Force-based Virtual Fixture

www.manaraa.com

 169

9.3 Virtual Reality Simulation Results

The implemented multithreaded approach was also tested using Virtual Reality

(VR) model of the PUMA manipulator. The software-based controller of the robot arm

was interfaced to the real Phantom Omni hardware controller using the socket

programming technique explained in section 7. Figure 9.40 shows the Cartesian

coordinates of the PUMA‟s end-effector and the Phantom Omni‟s end-effector. As

shown, the implemented multithreaded design allowed the execution of the telerobotic

without event mismatch. However, the communication between the Phantom Omni

hardware controller and the software-based controller was unstable and it stopped

responding abruptly. The problem with that is the unpredictability and unreliability of

the third-party MatLab socket API used to integrate the C++ implementation of . For the

case shown in Figure 9.40, the PUMA‟s end-effector follows the position in Cartesian

space are negligible, and for plotting purposes, an offset of 10.0 mm in each direction

was introduced so that the traces are distinguishable from one another. This shows that

the multi-threaded implementation allows the associated tasks for controlling the

telerobotic system to be executed concurrently without delays, increasing the overall

performance.

www.manaraa.com

 170

Figure 9.46 Position Results of Circular Path in Cartesian Space

Figures 9.47 and 9.48 illustrate the planar (X,Y) components of the trajectory using

datasets from the circular path corresponding to the robot arm and the haptic plotted

individually versus time in Figure 9.46.

Figure 9.47 Robot Position Tracking of the Circular Path in the X-Y Plane.

www.manaraa.com

 171

Figure 9.48 Haptic Position Tracking of the Circular Path in the X-Y Plane

For testing the sensor-based assist force (SAF's), the "haptic tip" was made to

follow a linear trajectory generated between the Puma end-effector and a target. As

mentioned previously, this trajectory is generated from the information gathered by the

camera and the laser. The virtual environment that consisted of a simulated target and an

end-effector along with a linear trajectory was available for the user to view on the PC

that runs the Phantom Omni. A graph of forces that the user experiences while deviating

from the trajectory versus time is shown in the Figure 9.49.

www.manaraa.com

 172

9 9.5 10 10.5 11 11.5 12 12.5 13

-1

0

1

time (secs)

F
x
(t

)

9 9.5 10 10.5 11 11.5 12 12.5 13

-1

0

1

time (secs)

F
y
(t

)

9 9.5 10 10.5 11 11.5 12 12.5 13

-1

0

1

time (secs)

F
z
(t

)

9 9.5 10 10.5 11 11.5 12 12.5 13

-1

0

1

time (secs)

F
(t

)

Figure 9.49 Typical Assistive Force Feedback Experienced by the User

 It can be observed from this graph that the user begins to deviate from the target

at the 12.0 second mark. As this happens the feedback forces increase trying to put the

user back on the trajectory. At around 12.7 second mark the user experiences the

maximum force as the user has deviated maximum from the trajectory. This way the user

is given force assistance to move along the trajectory. It should be also noted that the user

experiences the forces only if the user is at a certain radius near the trajectory. The user

experiences maximum forces at the outer periphery of the circle defined by the radius and

fails to experience any forces once the user leaves the periphery. The response of the

www.manaraa.com

 173

system is real time i.e., the user experiences the forces as soon as the user tries to move

away from the trajectory. This real time response has been possible because of the

multithreading strategies described previously. Using traditional signal processing

techniques, it was found that the short period deviations (“spikes”) shown in Figure 9.50

correspond to frequencies between 5.0 to 10.0 Hz. This figure also shows a simple

moving average filter used to remove those “noisy” signals. A second order Butterworth

filter was also implemented for this purpose with acceptable results which are not

included in this document.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

time (s)

F
o
rc

e
 s

ig
n
a
l
(N

)

Original Data

Filtered Data, h=3

Filtered Data, h=4

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

time (s)

F
o
rc

e
 s

ig
n
a
l
(N

)

Original Data

Filtered Signal, h = 30

Figure 9.50 Typical Results of the Moving Average Filter Implementation

www.manaraa.com

 174

9.4 Summary

The results of the interactive or physical simulations for the pick-up-a cup task

were presented and the performances for autonomous control mode, force and motion-

based virtual fixtures, and scaled teleoperation modes of assistance were compared. The

performance measures as shown in Figures 9.2 to 9.20 clearly indicate that the

autonomous, scaled and virtual fixture teleoperation modes enable appropriate assistance

to guide the user‟s motion during the execution of the pick-up-a-cup task. The

experiments conducted to validate the control strategies with the actual hardware show

that the errors in both position and orientation are acceptable. The results of the

experiments with the Puma 560, the Phantom Omni and the sensory suite (camera and a

laser range finder) for trajectory tracking as well as the force assistance for guiding the

user's motion were satisfactory. It was found that the variability shown by the boxplot

indicates that the completion time is not a sufficient parameter for comparison of the

autonomous and teleoperation modes. The performance measures also indicate that the

real-time performance of robotic system provides adequate assistance for trajectory

tracking, the manipulation of objects and completion of the pick-up-a-cup task. The

experiments conducted to validate the control strategies with the actual hardware show

that the errors in both position and orientation are acceptable. The results of the

experiments with the PUMA 560, the Phantom Omni and the sensory suite (camera and a

laser range finder) for trajectory tracking for guiding the user's motion were satisfactory.

It is shown that the system provides the sensor-based assistance to guide the user‟s

motion.

www.manaraa.com

 175

Chapter 10

Conclusions and Recommendations

10.1 Overview

 A PC-based multithreaded, hard real-time controller for a sensor-assisted

telerobotic system was developed. The implemented assistive force feedback system

used simple sensors such as a laser range finder to guide the user's motion and a CCD

camera for visual feedback. The user gets visual as well as haptic feedback on the remote

PC that has Phantom Omni as the master. It was shown that the force feedback provided

by the telerobotic controller and the sensors is consistent and in real-time, even though

the computational resources used for the implementation were purposely limited to

support a wide range of users. In order to coordinate the parallel execution of the

telerobotic tasks to run in real-time, a multithreaded architecture was developed. This

approach allowed the telerobotic control of the arm, sensory integration, and the

computations of the different forms of assistance without incurring in high costs,

increased complexity and scalability problems associated with multiprocessor

workstation systems.

 The control strategy described in this dissertation used sensory signals for regular,

scaled and virtual fixtures using position based and velocity based control, autonomous

mode, and force-based virtual fixture teleoperation during user interactions. The user

was enabled to switch between autonomous control mode, force and motion-based virtual

www.manaraa.com

 176

fixtures, and scaled teleoperation modes. Several experiments were conducted to validate

the trajectory following capabilities of the telerobotic system as well as the sensor-based

assistance to guide the user's motion. A virtual environment for object manipulation was

provided to the user in the form of a virtual cube, and a sphere was displayed as a visual

cue of the position and orientation of the tip of the haptic device. In addition to the

virtual environment, three (3) graphical views presented the sensory information to the

user for enhanced visual perception of the object's location relative to the end-effector of

the robot manipulator.

 A testbed was created for conducting both simulated and physical experiments.

The simulation was developed using a virtual reality model of the Puma 560 arm in

MatLab and the Virtual Reality Toolbox. The C++ programming software was

developed to interface the Phantom Omni software and the virtual reality simulations.

For the physical experiments, the Phantom Omni Haptic device from SensAble

Technologies is used as the master. It runs on a Pentium computer, with 1GHz single

processing unit. The Phantom Omni device uses the OpenHaptics software which runs

on Windows XP OS. The robot arm was equipped with a CCD camera and a Sick DT60

laser range finder. A Pentium II-666 MHz single processor computer was used to run the

QNX Real-time Operating System. The Puma 560 software-based control strategy is a

form of a PD plus gravitational compensation controller. The testing procedures of the

supervisory control scheme included circular, polynomial, Bezier curves, and linear

trajectories with force feedback along the Cartesian axes (X, Y, Z) as the user deviates

from any of those trajectories. During those interactions, the virtual environment

described previously as well as the camera views were displayed simultaneously on the

www.manaraa.com

 177

screen for visualization of the telerobotic environment. The control system architecture

designed to satisfy the real-time constraint consists of the following main threads:

1. The determination of the target position and orientation with respect to the Puma

end-effector (in joint or Cartesian space) and mapping this position and

orientation to the Phantom Omni tip.

2. A trajectory generation thread which computes intermediate points of the

trajectory to reach the target.

3. The computation of the joint angles of the PUMA for trajectory-following using

inverse kinematics based on the resolved-rate algorithm.

4. The computation of the torques using a proportional-derivative (PD) controller

with gravity compensation which was required to drive the motors in the PUMA.

5. The sensor information from the camera and the laser was fused to determine the

position and orientation of the target with respect to the PUMA‟s end-effector and

this data was sent to the Phantom Omni for further processing.

6. The communication thread handles the position and orientation information of the

Phantom Omni‟s end-effector. This information was used by the PUMA software

controller for position-based and velocity-based teleoperation modes.

Also the processor that handles the Phantom Omni device has the following threads:

1 The graphics thread: It renders a virtual target, end-effector position and a

trajectory on the user screen that is similar to the PUMA environment at a refresh

rate that conforms to the PUMA and Phantom end-effector movement.

www.manaraa.com

 178

2 The haptic thread: This thread computes the feedback forces based on the sensory

information about the trajectory of the PUMA and the users‟ movement of the

Phantom Omni. As the user deviates from the trajectory, the assistive forces

required to bring the user back on the trajectory were calculated and delivered to

the user using the OpenHaptics software and the actuators of the Phantom Omni

interface.

3 The communication thread handles the packets containing the Cartesian position

and the Euler‟s angles sent to the Phantom Omni application from the PUMA

software controller.

10.2 General Discussion

The integration of haptic feedback and the generation assistance based on sensory

information is a challenge due to the strict timing constraints for a realistic sensation of

touch and high update rates of the sensory inputs. Additionally, the combination of

visual and haptic information depends on computationally intensive pre-processing to

obtain the digital features from the images. In this dissertation a multithreaded

architecture was designed and implemented to deal with the timing constraints and high

update rates imposed by separating the computational tasks into different running threads

with synchronization mechanisms for inter-processing communication to achieve real-

time performance. The following is a list of the major contributions made in this

dissertation:

1. A multithreaded PC-based control scheme capable of real-time haptic and

visual feedback

www.manaraa.com

 179

2. Implementation of sensor-based assist functions (SAF's) for guiding the user's

motion in the form of scaling, motion-based and force-based virtual fixture

3. The development of an automatic control mode to enhance the manipulation

capabilities of the users and for reducing the possibility of fatigue over long

periods of times

4. The integration of a laser-range finder for the determination of the desired

trajectory by pointing the laser to the object of interest

5. An integrated approach for handling diverse sensor datasets and data

acquisition

10.3 Recommendations

 It is recommended to improve the computer vision sub-system to include more

sophisticated feature extraction algorithms and object recognition techniques. The

experimental tests were performed successfully for a single object in the field of view of

the camera and laser range finder and the computation of the centroid of the object of

interest, however, it is recommended to include "blobs" detection capabilities in order to

detect and to label multiple objects in the field of view of the camera, and then, use

probabilistic techniques for object recognition. Some geometrical features such as the

centroid, area, perimeter, and roundness of the detected objects can be compared with

existing geometrical features enumerated in a database for this purpose. This would add

flexibility to the trajectory generation in the presence of multiple objects as well as to the

autonomous mode control of the telerobotic system. Also, another recommendation is to

enable the laser-tracking of moving objects by using the current capabilities of the system

www.manaraa.com

 180

for image processing and data fusion of the sensory information from the camera, laser

range finder, and encoder readings. The multithreaded approach used proved to support

high update rates of the sensory data which are fundamental for the tracking of moving

objects.

 It is also recommended to extend the sensor-based assist force (SAF's) concepts to

include torque feedback. This requires force feedback in six degrees of freedom. In the

current implementation, the SAF's are 3-DoF output and, therefore, the assistance

provided corresponds to force components along the Cartesian axes. However, for

enhanced manipulation in 3D space, assisting or resisting torques may also be useful for

certain tasks. In the hardware side, the Phantom Omni will need to be replaced by a 6-

DoF haptic interface capable of reflecting torques. Commonly ADL tasks requiring

user‟s actions such as “turn”, “push”, “insert” can also be enhanced by a 6-DoF force-

based virtual fixture teleoperation mode.

www.manaraa.com

 181

Chapter 11

Future Work

11.1 Introduction

As previously discussed, the methods developed in this dissertation allowed the

execution of telerobotic manipulation tasks by the combination of visual information

using simple sensors and haptic force feedback to calculate assistive functions in real-

time. In the current version of the telerobotic control system, the calculation of the

assistive force for guiding the user's motion and the determination of the position and

orientation of an object of interest as "seen" by the sensors (eye-in-hand camera and laser

range finder) is based on a fixed reference frame located at the Puma 560 base. Having

this system controlling a robot on a mobile platform with sensor-based assist functions

such as the Wheelchair Mounted Robotic Arm (WMRA) may increase the flexibility of

such system as an assistive device. This chapter describes potential research problems

that the development of a real-time telerobotic control system with sensor-based assist

functions for a robot-mobile platform would entail.

11.2 Combined Mobility and Manipulation with Time-dependant Sensory

 Calibration Functions in Real-time

 The idea is to design a real-time control scheme which combines the control

strategies required for maximizing the combined mobility and manipulation capabilities

as implemented in [72], and, at the same time, implement the time-dependent sensory

www.manaraa.com

 182

calibration functions required to calculate the sensor-based assist functions (SAF's) as

described in this dissertation. The integration of a real-time telerobotic control system

with sensor-based assist functions and the "Wheelchair Mounted Robotic Arm", WMRA,

entails the implementation of optimized numerical approaches to deal with the

redundancy of the WMRA system as well as the online calibration functions to determine

the feedback force to guide the user's motion based on the sensor readings. Such

development would benefit users who are vision-impaired and also forced to use a

wheelchair.

11.3 Autonomous Navigation

 The implementation of navigational technologies with advanced perception

through the use of sensor fusion, autonomy and learning techniques might benefit from

the development of a Hybrid-Deliberative Architecture (HDA). HDA techniques might

provide a suitable solution when the environment can not be altered to accommodate the

robot‟s needs. Behavior-based robotics and Neuro-Fuzzy techniques for inference and

learning might be combined. In this scenario, Neural Networks (NN) might be extended

to automatically extract fuzzy rules from sensory information (or numerical data) while

Fuzzy Logic (FL) techniques might be used to resolve conflicts and control of primitive

behaviors. Hybrid-Deliberative systems and methods are not commonplace and

correspond to efforts of current research. Such implementation will require highly

responsive and stable computer and software architectures. The multithreading

framework developed for this work has the capabilities to perform in real-time and

implements a high-level communication protocol to deal with different sensory input

www.manaraa.com

 183

formats (RS232, RS485, parallel, USB, IEEE1392, among others). These capabilities

could serve as the foundation of the Hybrid-Deliberative approach.

11.4 Remote Assistance

 As already implemented, the system provides force assistance based on the visual

feedback and laser readings. A similar setup can be implemented with the added

capability for monitoring of the WMRA from a remote location using communication

channels over the Internet-based protocol. The sensory suite can be mounted at the end-

effector of the wheelchair-mounted robot arm, similar to the current version of the Puma

560 testbed. The present user interface will have to be modified to accommodate the

visual information from the optical sensors and the haptic graphical display interfaces to

be available online to the remote assistant. This way the remote human user will be able

to observe the environment around the WMRA. Using a haptic device as an input, the

remote assistant can specify the desired motion to assist the disable person remotely.

Several of the methods described in this thesis will be useful for this application.

www.manaraa.com

 184

References

[1] J. K. Salisbury, and M. A. Srinivasan, 1997, "Phantom-based Haptic Interaction with

Virtual Objects", IEEE Computer Graphics and Applications, Vol.17, Issue 5, Sept-

Oct, 6-10.

[2] N. Diolaiti, G. Niemeyer, F. Barbagli, J. K. Salisbury, and C. Melchiorri, 2005, "The

Effect of Quantization and Coulomb Friction on the Stability of Haptic Rendering" in

Proc. 1st World Haptics Conference, Pisa, Italy, Mar, 237-246.

[3] T. Massie and J. Salisbury, 1994, “The PHANTOM Haptic Interface: A Device for

Probing Virtual Objects” in Proc. ASME Winter Annual Meeting, Vol. 55-1, New

Orleans, LA, 295–300.

[4] Z.Y. Yang, Y.H. Chen, 2003, "Haptic Rendering of Milling Encoding", Proceedings

of the EuroHaptics 2003, Dublin, Ireland, 6–9 July, 2003, 206–217.

[5] P. Leskovsky, M. Harders, and G. Szekely, 2006, "Assessing the Fidelity of

Haptically Rendered Deformable Objects”, IEEE Haptics Symposium, Virginia,

USA, March 25-26, 19-25.

[6] Y. Guangqi, J.J. Corso, G.D Hager, and A.M. Okamura, "VisHap: Augmented Reality

Combining Haptics and Vision", IEEE International Conference on Systems, Man

and Cybernetics, Vol. 4, 5-8 October, 2003, pp. 3425 – 3431.

[7] T. L. McDaniel, and S. Panchanathan, "A Visio-Haptic Wearable System for

Assisting Individuals Who Are Blind", SIGACCESS Accessibility Computing,

September, 2006.

[8] C. R. Wagner, S. J. Lederman, and R. D. Howe, "A Tactile Shape Display Using RC

Servomotors", Proceedings of the 10
th

 Symposium on Haptic Interfaces for Virtual

Environment and Teleoperator Systems, pp. 354-355, 2002.

[9] V. Hayward and M. Cruz-Hernandez, "Tactile Display Device Using Distributed

Lateral Skin Stretch", Proceedings of the 8
th
 Symposium on Haptic Interfaces for

Virtual Environment and Teleoperator Systems, ASME IMECE, DSC-69-2, pp.

1309-1314, 2000.

[10] T.B. Sheridan, 1992, “Telerobotics, Automation and Human Supervisory Control”,

MIT Press, ISBN: 0-262-19316-7.

http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentCon.jsp?punumber=8811
http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentCon.jsp?punumber=8811

www.manaraa.com

 185

[11] J. Vertut and P. Coiffet, “Teleoperation and Robotics: Evolution and Development”,

Hermes Publishing, ISBN: 1-85121-002, Vol. 3A, pp23-63.

[12] W.R. Ferrell and T.B. Sheridan, 1967, “Supervisory Control of Remote

Manipulation”, IEEE Spectrum, 4, No 10, October, pp 81-88.

[13] T.B. Sheridan, 1993, “Space teleoperation through time delay: review and

prognosis”, IEEE Transactions on Robotics and Automation, Vol. 9, No. 5, October

1993, pp. 592-606.

[14] D.R. Yoerger and J. E. Slotine, 1991, “Adaptive sliding control of an experimental

underwater vehicle”, in Proceedings of 1991 IEEE International Conference on

Robotics and Automation, Vol. 3, 9-11 April, pp. 2746-2751.

[15] D. R. Yoerger, J. Newman, and J. E Slotine, 1986, “Supervisory control system for

the JASON ROV”, IEEE Journal of Oceanic Engineering, Vol. 11, Issue 3,

July1986, pp. 392 – 400.

[16] Young S. Park, Hyosig Kang, Tomas F. Ewing, Eric L. Faulring, J. Edward Colgate,

Michael A. Peshkin, " Enhanced Teleoperation for D & D”, in the 2004 IEEE

International Conference on Robotics and Automation, New Orleans, 2004.

[17] T. F. Chan and R. V. Dubey, “Design and Experimental Studies of a Generalized

Bilateral Controller for a Teleoperator System with a Six DoF Master and a Seven

DoF Slave”, in Proc. of the 1994 IEEE International Conference on Robotics and

Automation, San Diego, CA, USA, May 1994, Volume 3, pp 2612-2619.

[18] R. V. Dubey, T. F. Chan and S. E. Everett, “Variable Damping Impedance Control

of a Bilateral Telerobotic System,” IEEE Control System Magazine, February 1997.

[19] Luc D. Joly and Claude Andriot, “Imposing motion constraints to a force reflecting

telerobot through real-time simulation of a virtual mechanism”, in Proceedings of the

1994 IEEE International Conference on Robotics and Automation, San Diego, CA,

May 1994, pp. 357-362.

[20] T. F. Chan and R. V. Dubey, “Generalized Bilateral Controller for a Teleoperator

System with a Six DoF Master and a Seven DoF Slave”, Proceedings of the IEEE

International Conference on Robotics and Automation, San Diego, California, May

8-13, 1994, pp. 2612-2619.

[21] K. Sato, M. Kimura, and A. Abe, “Intelligent Manipulator System with

Nonsymmetric and Redundant Master-Slave”, Journal of Robotic System, 9(2), pp.

281-290, 1992.

www.manaraa.com

 186

[22] E.J. Veras, R. Swaminathan, and R. Dubey, “A Multithreaded Implementation of

Assist Functions to Control a Virtual Reality Model of a 6-DoF Robot Arm for

Rehabilitation Applications”, Florida Conference on Recent Advances in Robotics

and Robot Showcase, FCRAR, 2007, Tampa, Florida, May 31-June 01, 2007.

[23] G. Bolmsjo, H. Neveryd, and H. Ftring. “Robotics in Rehabilitation”, IEEE

Transactions on Rehabilitation Engineering, Vol. 3, No. 1, March, 1995.

[24] N. Pernalete, “Development of a Robotic Haptic Interface to Perform Vocational

Tasks by People with Disabilities”, Ph.D. Dissertation, Department of Electrical

Engineering, University of South Florida, December 2001.

[25] C. Stanger, C. Angling, W. Harwin, D. Romilly, “Devices for Assisting

Manipulation: A Summary of User Task Priorities”, 1994 IEEE Transactions on

Rehabilitation Engineering, Vol 2, No 4, December 1994.

[26] N. Pernalete, W. Yu, R. V. Dubey, and W.A. Moreno, “Development of an

Intelligent Mapping Based Telerobotic Manipulation System To Assist Persons With

Disabilities”, In Proc. of the 2002 IEEE International Conference on Robotics &

Automation, Washington, DC USA., May 2002.

[27] K. Kawamura, S. Bagchi, M. Iskarous, and M. Bishay, “Intelligent Robotic Systems

in Service of Disabled”, 1995 IEEE Transactions on Rehabilitation Engineering,

Vol. 3, No. 1, March 1995.

[28] S. E. Everett, R.V. Dubey, Y. Isoda, and C. Dumont, “Vision-Based End-Effector

Alignment Assistance for Teleoperation”. Proceedings of the IEEE International

Conference on Robotics and Automation, Detroit, MI.. May 1999, pp. 543-549.

[29] W. Yu, B. Fritz, N. Pernalete, M. Jurczyk, and R. V. Dubey, “Sensors Assisted

Telemanipulation for Maximizing Manipulation Capabilities of Persons With

Disabilities”, Haptics Symposium 2003, Los Angles, CA, 2003.

[30] N. Pernalete, W. Yu, and R. Dubey, “Augmentation of manipulation Capabilities of

Persons with Disabilities Using Scaled Telemanipulation”, IEEE/RSJ International

Conference on Intelligent Robots and Systems, Lausanne, Switzerland, October

2002.

[31] Steven Edward Everett, “Human-Machine Cooperative Telerobotics Using

Uncertain Sensor and Model Data”. Ph.D. Dissertation, University of Tennessee,

Knoxville, 1998.

[32] L.B Rosenberg, Virtual fixtures: Perceptual tools for telerobotic manipulation”,

IEEE Virtual Reality Annual International Symposium, 18-22 Sep 1993, pp. 76 -82.

www.manaraa.com

 187

[33] Kazuhiro Kosuge, Koji Takeo, and Toshio Pukuda, “Unified approach for

teleoperation of virtual and real environment manipulation based on reference

dynamics”, in Proc. of the 1995 IEEE International Conference on Robotics and

Automation, Nagoya, Japan, May1995.

[34] P. Marayong, A. Bettini and A. Okamura, “Effect of Virtual Fixture Compliance on

Human-Machine Cooperative Manipulation”, in IEEE/RSJ Proc., Lausanne,

Switzerland, Oct 2002.

[35] Z. Stanisic, S. Payandeh, and E. Jackson, “Virtual Fixture as an Aid for

Teleoperation”, in 9
th
 Canadian Aeronautic and Space Inst. Conference, 1996.

[36] S, Payandeh, and Z. Stanisic, “On Application of Virtual Fixtures as an Aid for

Telemanipulation and Training”, 10
th

 Symposium on Haptic Interfaces for Virtual

Environment and Teleoperator Systems, 2002.

[37] N. Costescu, M. Loffler, E. Zergeroglu, D. Dawson, “QRobot – A Multitasking PC

Based Robot Control System”, Microcomputer Applications Journal Special Issue on

Robotics, Vol. 18 No. 1, pages 13-22.

[38] E. Jung, C. Kapoor, and D. Batory, 2005, “Automatic Code Generation for Actuator

Interfacing from a Declarative Specification”, IEEE International Conference on

Robotics and Systems (IROW), Edmonton, Canada.

[39] Herman Bruyninckx and Peter Soetens, “Generic Real-Time Infrastructure for

Signal Acquisition, Generation and Processing”, 4
th
 Real-time Linux Workshop,

Boston, MA, December, 2002.

[40] Microsoft Robotics Studio http://msdn2.microsoft.com.

[41] S. Cherry, “Robots, Incorporated”, IEEE Spectrum Magazine, August, 2007, pp 24-

29.

[42] N. Turro, O. Khatib, and E. Coste-Maniere, “Haptically Augmented Teleoperation”,

in Proc. IEEE International Conference on Robotics and Automation, Seoul, Korea,

May 21-26, 2001, pp 386-392.

[43] N. Hogan, H. I. Krebs, J. Charnnarong, P. Srikrishna, and A. Sharon, “MIT-

MANUS: a workstation for manual therapy and training II”, International Society for

Optical Engineering, 2005.

[44] S. Charles, H. Das, T. Ohm, C. Boswell, G. Rodriguez, and R. Steele, “Dexterity-

enhanced Telerobotic Microsurgery”, MicroDexterity Systems, Inc., Charles Retina

Institute, Memphis, TN, and JPL/NASA, California Institute of Technology,

Pasadena, CA, 1997.

http://msdn2.microsoft.com/

www.manaraa.com

 188

[45] S. E. Everett and R. V. Dubey, “Sensor-Assisted Variable Trajectory Mapping for

Telerobotic Task Execution”, in Proc. of IEEE International Conference on Robotics

and Automation, 1998.

[46] R.V. Dubey, S.E. Everett, N. Pernalete, and K.A, Manocha, 2001, "Teleoperation

Assistance through Variable Velocity Mapping" IEEE Transactions on Robotics and

Automation, Vol. 17, Issue 5, Oct. 2001, 761–766.

[47] W. Yu, R. Dubey and N. Pernalete, “Robotic Therapy for Persons with Disabilities

Using Hidden Markov Model Based Skill Learning”, First Conference on Intelligent

Manipulation and Grasping, Genova, Italy, July 1-2, 2004.

[48] L. L. Kovács and G. Stépán, “Dynamics of Digital Force Control Applied in

Rehabilitation Robotics”, Meccanica Journal, Springer Netherlands, Vol. 38, No. 2,

March, 2003, pp. 213-226.

[49] A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz, and M. Goodrich,

"Common metrics for human-robot interaction", in Proc. 2006 ACM Conference on

Human-Robot Interaction, 2006, pp 33-40.

[50] QNX RTOS Soft Systemswww.qnx.com/index.html.

[51] J. Craig, 2003, "Introduction to Robotics Mechanics and Control", 3
rd

 Edition,

Addison-Wesley Publishing, ISBN 0201543613.

[52] B. Armstrong, O. Khatib, and J. Burdick, “The explicit dynamic model and inertial

parameters of the Puma 560 arm” in Proc. IEEE International Conference on

Robotics and Automation, Vol. 1, San Francisco, USA, pp. 510–8, 1986.

[53] D. E. Whitney, 1969, "Resolved motion rate control of manipulators and human

prostheses", IEEE Transactions on Man and Machine Systems, Vol. MMS-10, June,

47-53.

[54] D. E. Whitney, 1972, "The mathematics of coordinated control of prosthetic arms

and manipulators", ASME Journal of Dynamic Systems, Measurement, and Control,

Dec., 303-309.

[55] J.Y.S Luh, M.W. Walker, and R.P. Paul, “Resolved-acceleration Control of

Mechanical Manipulators”, IEEE Transactions on Automatic Control, Vol. AC-25,

No.3, June, 1980, pp 468-474.

[56] R. Dubey, and J. Y. S Luh, 1987, "Redundant Robot Control for Higher Flexibility",

in Proc. of 1987 IEEE International Conference on Robotics and Automation,

Vol.4, March 1987, 1066-1072.

http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentIssue.jsp?punumber=70
http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentIssue.jsp?punumber=70
http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentIssue.jsp?punumber=70
http://www.qnx.com/index.html
http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentCon.jsp?punumber=8153
http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentCon.jsp?punumber=8153

www.manaraa.com

 189

[57] M. Takegaki and S. Arimoto, 1981, "A New Feedback Method for Dynamic Control

of Manipulators", J. Dyn. Sys. Meas. Control Transaction. ASME,103 119-125,

1981.

[58] A. Fisher, and J. M. Vance, 2003, “PHANTOM Haptic Device Implemented in a

Projection Screen Virtual Environment”, 7
th
 International Immersive Projection

Technologies Workshop, Eurographics Workshop on Virtual Environments, 225-

230.

[59] R. Krten, 2001, "Getting Started with QNX Neutrino 2: A Guide for Realtime

Programmers”, Parse Software Devices, Ontario, Canada, ISBN 0-9682501-1-4.

[60] R. P. Paul, “Robot Manipulators: Mathematics, Programming and Control”, MIT

Press, Boston, 1981, ISBN: 0-262-16082-X.

[61] R. R. Murphy, "Introduction to AI Robotics", The MIT Press, Cambridge,

Massachusetts, 2000. ISBN: 0-262-13383-0.

[62] Roger Y. Tsai, "A versatile Camera Calibration Technique for High-Accuracy 3D

Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses", IEEE

Journal of Robotics and Automation, Vol. RA-3, No. 4, August 1987, 323-344.

[63] J. Y. Bouguet, “A Camera Calibration Toolbox for MatLab”,

www.vision.caltech.edu/bouguetj/calib_doc.

[64] R.M. Haralick, and L.G. Shapiro, “Computer and Robot Vision”, Addison Wesley

Publishing Co., ISBN: 0-201-10877-1, Vol. I, pp 60-93.

[65] R. Willson, "Modeling and Calibration of Automated Zoom Lenses", in Proceedings

of the SPIE #2350, Videometrics III, October 1994, pp.170-186.

[66] J. Canny, 1986, "A Computational Approach to Edge Detection", IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 8, Issue 6, Nov, 679-698.

[67] Z. Zhang, "Flexible Camera Calibration by Viewing a Plane from Unknown

Orientations", Microsoft Research, One Microsoft Way, Redmond, Washington,

98052-6399, USA.

[68] Ortega, M., Redon, S., and Coquillart, S., 2006, "A Six Degree-of-Freedom God-

Object Method for Haptic Display of Rigid Bodies", Virtual Reality Conference, 25-

29 March 2006, 191-198.

[69] Paljic, A., Burkhardtt, J.M., and Coquillart, S., 2004, "Evaluation of pseudo-haptic

feedback for simulating torque: a comparison between isometric and elastic input

devices", Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004.

12th International Symposium on Haptics, 27-28 March, 2004, 216-223.

http://www.vision.caltech.edu/bouguetj/calib_doc
http://www-robotics.jpl.nasa.gov/publications/Reg_Willson/spie94.pdf
http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentCon.jsp?punumber=11055
http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentCon.jsp?punumber=9046
http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentCon.jsp?punumber=9046
http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentCon.jsp?punumber=9046

www.manaraa.com

 190

[70] Tarn, T.J., Bejczy, A.K., Marth, G.T. and Ramadorai, A.K. "Performance

Comparison of Four Manipulator Servo Schemes", IEEE Control Systems Magazine,

February, 1993, pp 22-29.

[71] Douglas C. Montgomery, and George C. Runger, “Applied Statistics and Probability

for Engineers”, 3
rd

 Edition, John Wiley & Sons, Inc. 2002, ISBN: 0-471-20454-4.

[72] R. M. Alqasemi, "Maximizing Manipulation Capabilities of Persons with

Disabilities Using a Smart 9-Degree-of-Freedom Wheelchair-Mounted Robotic Arm

System", Ph.D. Dissertation, University of South Florida, 2007.

www.manaraa.com

 191

Bibliography

 The following bibliography was revised and studied for learning fundamentals of

some robotics and haptic concepts during the course of this research. It is listed for the

benefit of potential readers.

A. J. Davison, "Real-Time Simultaneous Localization and Mapping with a Single

Camera", ICCV 2003.

C. S. G. Lee, “Robot arm kinematics, dynamics and control,” IEEE J. Computer, Vol. 15,

pp. 62–80, Dec. 1982.

D. K. Swanson and W. J. Book, “Path-Following Control for Dissipative Passive Haptic

Displays”, 11
th

 International Symposium on Haptic Interfaces for Virtual

Environment and Teleoperator Systems, Los Angeles, California, pp 101-108,

March 22-23, 2003.

E. Chen, 1999, "Six degree-of-freedom Haptic System for Desktop Virtual Prototyping

Applications, Proceedings of the First International Workshop on Virtual Reality and

Prototyping, Laval, France, June, 1999, 97–106.

Ho, C., Basdogan, C., Srinivasan, M.A., 1998, "An Efficient Haptic Rendering

Technique for Displaying Polygonal Objects with Surface Details in Virtual

Environments" submitted to Presence: Teleoperators and Virtual Environments.

H.T. Yau, C.H. Menq, 1995, "Automated CMM Path Planning for Dimensional

Inspection of Dies and Molds Having Complex Surfaces", International Journal of

Machine Tools and Manufacture 35 (6) (1995) 861–876.

J. M. Hollerbach, “A Survey of Kinematic Calibration”, In O. Khatib, J. J. Craig, and T.

Lozano-Perez, editors, Robotics Review 1, The MIT Press, Cambridge, MA, 1989.

J. M. Prager, 1980, "Extracting and labeling boundary segments in natural scenes", IEEE

Transactions PAMI 2, January 1
st
, 16-27.

J. T. Feddema, C. S. George Lee, and O. R. Mitchell, “Weighted selection of image

features for resolved rate visual feedback control”, IEEE Transactions on Robotics

and Automation, 7:31-47, 1991.

www.manaraa.com

 192

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and

accuracy evaluation”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 14(10), Oct. 1992, pp. 965–980.

L.G. Shapiro and G.C. Stockman, “Computer Vision”, Prentice Hall, ISBN: 0-13-

030796-3, pp. 422-453.

M. Ikits, C. Hansen, and C. R. Johnson, 2003, “A Comprehensive Calibration and

Registration Procedure for the Visual Haptic Workbench”, Scientific Computing and

Imaging Institute, University of Utah, Salt Lake City, Utah, U.S.A.

M. Li and A. M. Okamura, “Recognition of Operator Motions for Real-Time Assistance

using Virtual Fixtures”, 11
th

 International Symposium on Haptic Interfaces for

Virtual Environment and Teleoperator Systems, Los Angeles, California, pp 125-

131, March 22-23, 2003.

M. Skubic, and R.A. Volz, 2004, "Learning Force Sensory Patterns and Skills from

Human Demonstration", International Journal of Machine Tools and Manufacture

44, 18 March, 2004, 1009–1017.

N.I. Durlach, A.S. Mavor, 1995, Virtual Reality: Scientific and Technological

Challenges, National Academy Press, Washington, DC, 1995.

P. I. Corke, 1996, "A Robotics Toolbox for MatLab," IEEE Robotics and Automation

Magazine, Vol. 3, 24-32.

P. I. Corke, and B.Armstrong-Helouvry, 1994, "A Search for Consensus among Model

Parameters Reported for the PUMA 560 Robot" in Proc. of 1994 IEEE International

Conference on Robotics and Automation, Vol. 2, 8-13 May, 1994, 1608-1613.

R. B. Gillespie, J. E. Colgate, and M. A. Peshkin, “A general framework for Robot

Control”, IEEE Transactions on Robotics and Automation, Vol. 17, Num 4, pp 391-

401, August 2001.

R. Hartley and A. Zisserman, 2004, "Multiple View Geometry in Computer Vision",

Cambridge, MA, 2
nd

 Edition, Cambridge University Press, ISBN 0521540518.

R. M. Haralick,H., Joo, C. Lee, X. Zhuang, V.G. Vaidya, and M. B. Kim, 1989, "Pose

Estimation from Corresponding Point Data", IEEE Transactions On Systems, Man.

And Cybernetics, Vol. 19, No. 6, November/December 1989.

R.P. Paul, and C. N. Stevenson, 1983, "Kinematics of Robot Wrists", IEEE International

Journal of Robotics Research, Vol. 1, No. 2, 33-38.

R. Paul, M. Rong, and H. Zhang, “Dynamics of Puma manipulator,” in American Control

Conference, San Francisco, CA, 22-24 June, 1983, pp. 491-496.

http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentCon.jsp?punumber=941
http://ieeexplore.ieee.org.proxy.usf.edu/xpl/RecentCon.jsp?punumber=941

www.manaraa.com

 193

R. P. Paul and H. Zhang, “Computationally efficient kinematics for manipulators with

spherical wrists,” International Journal of Robotics Research, Vol. 5, No. 2, 1986.

S. E. Salcudean, N. M. Wong, and R. L. Hollis, “Design and Control of a Force-

Reflecting Teleoperation System with Magnetically Levitated Master and Wrist”,

IEEE Transactions on Robotics and Automation, Vol. 11, No. 6, December 1995,

pp. 844-858.

T. Gutierrez, J.I. Barabero, M. Aizpitarte, A.R. Cariilo, A. Eguidazu, 1998, "Assembly

Simulation Through Haptic Virtual Prototypes", Proceedings of the 3
rd

 Phantom

Users Group Workshop, Dedham, MA, 3–6 October, 1998.

T. Yoshikawa, 1990, "Foundations of Robotics: Analysis and Control", MIT Press,

ISBN: 0262240289.

W.H. Press, B.P. Flannery, S. A. Teukolsky, and W.T. Vetterling, 1988, “Numerical

Recipes in C”, 2
nd

 Edition, Cambridge University Press, Cambridge, MA, USA,

ISBN: 0-521-43108-5.

Y. Abdel-Aziz, and H. Karara, 1971, "Direct linear transformation from comparator

coordinates into object space coordinates", in Proc. of ASP/UI Symposium on Close-

Range Photogrammetric Systems, Urbana, IL., pp. 1-48.

Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, "Model-based and image-based 3D scene

representation for interactive visualization", Computer Vision and Image

Understanding, Vol. 96, Issue 3, December 2004, 274 – 293.

www.manaraa.com

 194

Appendices

www.manaraa.com

 195

Appendix A: Puma 560 Homogeneous Transformations

 The homogeneous transformations are obtained from the substitution of the DH

parameters in Table 3.1 into the transformation equation given by Eq. [6] yields to:

















 



1000

0100

00cossin

00sincos

11

11

0

1





T (A.1)

























1000

00cossin

0100

00sincos

22

22

1

2




T (A.2)

















 



1000

100

00cossin

0sincos

3

33

233

2

3
d

a

T




 (A.3)

























1000

00cossin

100

0sincos

44

4

344

3

4




d

a

T (A.4)

























1000

00cossin

0100

00sincos

55

55

4

5




T (A.5)

























1000

00cossin

0100

00sincos

66

66

5

6




T (A.6)

www.manaraa.com

 196

Appendix A (Continued)

Multiplying (A.1) – (A.6), the homogeneous transformation matrix of the end-effector

frame, {6}, in terms of the reference frame {0} corresponding to the base of the robot

(See Figure 3.1) as can be now be calculated:

TTTTTTT 5

6

4

5

3

4

2

3

1

2

0

1

0

6  (A.7)

The symbolic evaluation of Eq. (A.7) can be written as:





















1000

333231

232221

131211

0

6

z

y

x

prrr

prrr

prrr

T (A.8)

where,     64654155235465423111 scccsscsssscccccr  (A.9)

    64654165236465423121 scccsccssssccccsr 

  6523646542331 cscsscccsr 

    65464165236465423112 scsccsssscssccccr 

    65464165236465423122 scscccssscsscccsr 

  6523646542332 ssccssccsr 

  5415235423113 ssscsscccr 

  5415235423123 ssccssccsr 

523542333 ccscsr 

  13234233221 sdsdcacacpx 

  13234233221 cdsdcacaspy 

23422233 cdsasapz 

www.manaraa.com

 197

Appendix B: Equivalent Single Angle-Axis Representation

 The homogeneous transformation matrix, T, which describes a rotation around an

arbitrary axis vector  and an angle defined as  is given by the following matrix [48].



























0.10.00.00.0

zzzxzyyzx

yxyzyyzyx

xyxzzxyxx

PcVsVsV

PsVcVsV

PsVsVcV

T












 (B.1)

where,)sin( s ,)cos( c , and)cos(1  V , and  
zyx  ,, are the directional

components of the rotational axis  . The (3x3) rotation matrix is, then:





































cVsVsV

sVcVsV

sVsVcV

R

zzxzyyzx

xyzyyzyx

yxzzxyxx

 (B.2)

The first three elements of column fourth of T are the components of the position vector,

P:



















z

y

x

P

P

P

P (B.3)

A linear trajectory in Cartesian space can now be generated between two points

defined by their corresponding homogenous transformation matrices, 1T and 2T , where:

www.manaraa.com

 198

Appendix B (Continued)























0.10.00.00.0

1111

1111

1111

1

zzzz

yyyy

xxxx

Paon

Paon

Paon

T (B.4)

and























0.10.00.00.0

2222

2222

2222

2

zzzz

yyyy

xxxx

Paon

Paon

Paon

T (B.5)

If N intermediate points are desired between the initial point defined by the homogeneous

transformation 1T and the destination position defined by 2T , the linear components can be

found as:

N

PP
dx xx

12 


N

PP
dy

yy

12 


N

PP
dz zz

12 
 (B.6)

For the rotational components, the following calculations are required. Notice that the

transform is used instead of the inverse because the rotation matrix is orthogonal:

T

zzz

yyy

xxx

aon

aon

aon

R


















111

111

111

















zzz

yyy

xxx

aon

aon

aon

222

222

222

=

















333231

232221

131211

rrr

rrr

rrr

 (B.7)

Before proceeding, it is convenient to ensure that the elements of the resulting

matrix define an orthogonal matrix. This is accomplished by the cross product and taking

any two columns as follows:

3122322113 rrrrr  3112321123 rrrrr  2112221133 rrrrr  (B.8)

www.manaraa.com

 199

Appendix B (Continued)

Now, the equivalent single rotation angle can be found from the ijr elements of the

rotation matrix given by Eq. (B.7) and (B.8), as follows:

       




  1,atan2 332211

2

1221

2

1331

2

2332 rrrrrrrrr (B.9)

Using the equivalent angle, the directional components of the single axis

 
zyx  ,, can now be found using the following set of equations. Notice that these

equations include provisions to avoid the representational singularities (i.e. the axis is

poorly defined) arising from situations where the angle of rotation is very small (defined

by a tolerance, Toler), or 180°. The following equations are evaluated:



























0

0

1

Toler If  (B.10)

 

 

 






















































s

rr

s

rr

s

rr

*2

*2

*2

90 If

1221

3113

2332

 (B.11)

 
 

 
 

 
 
















































V

cr
rr

V

cr
rr

V

cr
rr

z

y

x

33

1221

22

3113

11
2332

.sign

.sign

.sign

18090 If (B.12)

www.manaraa.com

 200

Appendix B (Continued)

In Eq. B.12, the following substitutions are needed to ensure the most positive

components of are  zyx aon ,, used:

   

 

 
































V

rr

V

rr

x

z

x

y

zxyx

2

2
 If

3113

1221

 (B.12a)

   

 

 
































V

rr

V

rr

y

z

y

y

zyxy

2

2
 If

2332

1221

 (B.12b)

   

 

 
































V

rr

V

rr

z

z

z

y

yzxz

2

2
 If

2332

1331

 (B.12c)

Now, a rotation matrix can be obtained for every intermediate point by dividing the

equivalent rotation angle into (N-1) equally spaced values by substitution of the

corresponding components  
zyx  ,, of the single axis rotation, Eq. B.10 to B.12, and

the evaluation of the conditions to avoid representational singularities in B.12a to B.12c.

This procedure will allow having well-defined intermediate transformations between the

initial and the goal (destination) transformations.

www.manaraa.com

201

Appendix C: MatLab Script for the Symbolic Jacobian Matrix

function Jac = symJacobn()

%symJacobn calculates the symbolic form of the Jacobian of the manipulator

%with respect to the end-effector frame.

puma560akb;

syms th1 th2 th3 th4 th5 th6 real;

syms th2d th3d th4d th5d th6d real;
syms a3 a4 d2 d3 d4 real;

th=sym('[th1; th2; th3; th4; th5; th6]');

%Symbolic values:

DH=[0 0 th(1) 0; -pi/2 0 th(2) d2;0 a3 th(3) d3; pi/2 a4 th(4) d4; -pi/2 0 th(5) 0; pi/2 0 th(6) 0];

U=sym('[1 0 0 0;0 1 0 0;0 0 1 0; 0 0 0 1]');

for i=6:-1:1

 dx = [-U(1,1)*U(2,4)+U(2,1)*U(1,4);

 -U(1,2)*U(2,4)+U(2,2)*U(1,4);

 -U(1,3)*U(2,4)+U(2,3)*U(1,4)];

 delt = [U(3,1); U(3,2); U(3,3)];

 Jac(1,i) = dx(1);

 Jac(2,i) = dx(2);

 Jac(3,i) = dx(3);

 Jac(4,i) = delt(1);

 Jac(5,i) = delt(2);

 Jac(6,i) = delt(3);

 TT=rotx(DH(i,1))*transl(DH(i,2),0,0)*rotz(DH(i,3))*transl(0,0,DH(i,4));

 U = TT*U;
end

%The Solution using symbolic approach is:

% ans =

% 0.4995 0.2394 0.3162 0 0 0

% -0.4457 0.3319 0.2813 0 0 0

% -0.0303 -0.5160 -0.0941 0 0 0

% 0.4504 -0.6164 -0.6164 0.3309 -0.0479 0

% 0.5524 0.7607 0.7607 0.0159 0.9989 0

% -0.7014 0.2034 0.2034 0.9435 0 1.0000

% Solution using Corke's toolbox

% jacobn(p560m,qready)

% ans =

% 0.4995 0.2394 0.3162 0 0 0

% -0.4457 0.3319 0.2813 0 0 0

% -0.0303 -0.5160 -0.0941 0 0 0

% 0.4504 -0.6164 -0.6164 0.3309 -0.0479 0

% 0.5524 0.7607 0.7607 0.0159 0.9989 0

% -0.7014 0.2034 0.2034 0.9435 0.0000 1.0000

www.manaraa.com

202

Appendix D: Singularity-Robust (SR) Inverse

 The SR inverse [16] is also known as damped pseudoinverse [18]. Considering a

linear system of equations as the form:

    bxA  (D.1)

 If the matrix of coefficients  A is not square, the pseudoinverse A
+
 may be used

to compute the least-square solution with the objective function defined as the minimal

norm. The pseudo-inverse solution avoids the problem of extremely large amplitude in

the neighborhood of singular points by minimizing the sum of the norms of the error

(defined as Axb ) and the solution x . For an m-by-n (where m < n) matrix A, its

pseudoinverse is computed by:

  1  TT AAAA (D.2)

 The resulting matrix
A may have extremely large elements when  TAA is nearly

singular. The SR inverse uses the following equation instead:

  1* 
 IAAAA TT  (D.3)

Where
*A is the SR inverse of  A , I is the identity matrix, and  is the parameter that

determines the weighting between the norm of the solution and the error. If a small is

used, then the error gets small, but the solution might get large around singular points and

vice versa [19].

www.manaraa.com

203

Appendix E: Angular Velocities Components of the End-Effector

 The Euler‟s rotation theorem states that any rotation can be defined using three

angles   ,, , as shown in Figure ZZ. These angles   ,, are called Euler angles.

Figure E.1 Definition of the Euler Angles

 In robotics it is more convenient to write the Euler‟s rotation in terms of rotation

matrices. For the case of the angular velocity components of the end-effector, the

equation that describes the total rotation is     zxz RRRR)()(,,  . The

corresponding rotation matrices in terms of the Euler‟s angles are:

 


















100

0)cos()sin(

0)sin()cos(





zR ,  




















)cos()sin(0

)sin()cos(0

001



xR , and  


















100

0)cos()sin(

0)sin()cos(





zR E.1

Now, the total rotation matrix, R, is found to be:

   
































ccsss

sccccsscsccs

sssccscssccc

RRRR zxz)()(,, E.2

where)cos( c ,)cos( c ,)cos( c ,)sin( s ,)sin( s , and)sin( s .

www.manaraa.com

204

Appendix E (Continued)

In the end-effector axis, the components of the angular velocity   are obtained by

writing the total rotation matrix as:

   321

333231

232221

131211

RRR

rrr

rrr

rrr

R 

















 and  


















z

y

x







 (E.3)

    zyx

zyx

zyx

zyx

z

y

x

RRR

rrr

rrr

rrr

rrr

rrr

rrr

R 













 321

333231

232221

131211

333231

232221

131211




















































 (E.4)

where z is the rotation about the z- axis by angle  and it is obtained from the total

rotation given by Eq. (TT). Taking the z-component as   zR 3 yields to:






























c

sc

ss

 (E.5)

Next, the rotation about the -axis by angle , is obtained from  given by second

column vector of  )(zR :


























0

s

c

 (E.6)

Similarly, the rotation by angle is given by the third column vector of  )(zR as:






















1

0

0

 (E.7)

www.manaraa.com

205

Appendix E (Continued)

The end-effector angular velocity components in matrix form are:





















































100

0

0

ssc

css

 (E.8)

www.manaraa.com

206

Appendix F: Specifications for the PHANTOM Omni Haptic Device

 The Phantom Omni is a haptic device model developed by SensAble

Technologies. It offers six (6) positional DoF as input and three (3) forces DoF output.

The specifications for this device are shown in Table F.1

Table F.1 Specifications for the Omni Haptic Device

Model The PHANTOM Omni Device

Force feedback workspace: ~6.4 W x 4.8 H x 2.8 D in

> 160 W x 120 H x 70 D mm

Footprint:

Physical area the base of device

occupies on the desk

6 5/8 W x 8 D in

~168 W x 203 D mm

Weight (device only): 3 lb 15 oz

Range of motion: Hand movement pivoting at wrist

Nominal position resolution:

> 450 dpi

~ 0.055 mm

Backdrive friction: <1 oz (0.26 N)

Maximum exertable force at nominal

(orthogonal arms) position:

0.75 lbf. (3.3 N)

Continuous exertable force (24 hrs.) > 0.2 lbf. (0.88 N)

Stiffness:

X axis > 7.3 lb/in (1.26 N/mm)

Y axis > 13.4 lb/in (2.31 N/mm)

Z axis > 5.9 lb/in (1.02 N/mm)

Inertia (apparent mass at tip): ~0.101 lbm. (45 g)

Force feedback: x, y, z (3Dof Output)

Position sensing:

[Stylus gimbal]:

x, y, z (digital encoders)

[Pitch, roll, yaw (± 5% linearity

potentiometers)]

(6Dof Input)

Interface: IEEE-1394 FireWire® port

Supported platforms: Intel-based PCs

GHOST® SDK compatibility: No

3D Touch™ SDK compatibility: Yes

Applications: Selected Types of Haptic Research and

The FreeForm® Concept™ system

www.manaraa.com

207

Appendix G: Custom Made Sick DT60 Data Acquisition Module

 The Sick DT60 is distance sensor that uses a laser diode to produce red light

which is a reflected from the target object to generate an analogue signal proportional to

the distance from the target. The DT60 sensor has a range of 200mm to 6m and is

designed to be used with any target material. According to the documentation provided

by the manufacturer, the visible red light is an eye-safe light beam, however, it is highly

recommended to avoid direct exposure to the laser light. Power and signal connections to

the laser are via a standard M12, 5-pin plug. Accuracy is ±10mm with a typical

reproducibility of around 7mm. The output signal is a current varying from 4.0mA to

20.0mA proportional to the measured distance. Before Analog-to-Digital conversion

using the 232 SDA12, a high precision resistor must be used to convert to a voltage

signal with 0-5 VDC range (See Figure G.1).

Figure G.1 Custom-made ADC Module for the DT60 Sick Laser Sensor

Pin 17

Pin 18

Pin 8

Pin 19

Pin 7

R
(249, 0.5%)

232 SDA12
Converter

Sick
DT60

Signal (wht)

Com (blu)

Regulated Power

12VDC

+12 (brn)

www.manaraa.com

About the Author

Eduardo J. Veras was born on August 9, 1963 in Santiago, Dominican Republic. He

received a Bachelor‟s Degree in Mechanical Engineering from Pontificia Universidad

Católica Madre y Maestra University in 1987 and a M.S. in Design and Manufacturing

from University of Puerto Rico at Mayaguez in 1992. He started teaching at Polytechnic

University of Puerto Rico until he entered the Ph.D. program at the University of South

Florida in 2004. Mr. Veras was a teaching assistant in the USF Mechanical

Engineering Laboratory II and a research assistant in the Rehabilitation Robotics Center

at USF. His responsibilities as RA included development of a haptic controller to drive a

VR of the Puma 560, and interfaces for a Spaceball, Barrett Hand, and Sick LRF for

MatLab, and a BCI-2000 program to drive a wheelchair-mounted robotic arm. He

accepted a position as a faculty member at the Polytechnic University of Puerto Rico,

Orlando.

	University of South Florida
	Scholar Commons
	11-21-2008

	Design and Implementation of a Hard Real-Time Telerobotic Control System Using Sensor-Based Assist Functions
	Eduardo J. Veras-Jorge
	Scholar Commons Citation

	Generalized Non-Dimensional Depth-Discharge Rating Curves

