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Design and Implementation of a Hard Real-Time Telerobotic Control System Using 

Sensor-Based Assist Functions  

 

Eduardo J. Veras 

Abstract 

 This dissertation presents a novel concept of a hard real-time telerobotic control 

system using sensory-based assistive functions combining autonomous control mode, 

force and motion-based virtual fixtures, and scaled teleoperation. The system has been 

implemented as a PC-based multithreaded, real-time controller with a haptic user 

interface and a 6-DoF slave manipulator.  A telerobotic system is a system that allows a 

human to control a manipulator remotely and the human control is combined with 

computer control. A telerobotic control system with sensor-based assistance capabilities 

enables the user to make high-level decisions, such as target object selection, and it 

enables the system to generate trajectories and virtual constraints to be used for 

autonomous motion or scaled teleoperation.  The design and realization of a telerobotic 

system with the capabilities of sensing and manipulating objects with haptic feedback, 

either real or virtual, require utilization of sensor-based assist functions through an 

efficient real-time control scheme.  This dissertation addresses the problem of integrating 

sensory information and the calculation of sensor-based assist functions (SAF's) in hard 

real-time using PC-based resources.  The SAF‟s calculations are based on information 

from a laser range finder, with additional visual feedback from a camera, and haptic 

measurements for motion assistance and scaling during the approach to a target and while 
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following a desired path.  This research compares the performance of the autonomous 

control mode, force and motion-based virtual fixtures, and scaled teleoperation.  The 

results show that a versatile PC-based real-time telerobotic platform adaptable to a wide 

range of users and tasks is achievable.  A key aspect is the real-time operation and 

performance with multithreaded software architecture.  This platform can be used for 

several applications in areas such as rehabilitation engineering and clinical research, 

surgery, defense, and assistive technology solutions. 
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Chapter 1 

 

Introduction 

 

1.1. Motivation 

The practicalities of creating a telerobotic control system to provide assistance for 

a wide community of users impose computational constraints in the realization of such 

system.  On one hand, the external assistance (scaling, virtual fixture or haptic force 

feedback) is integrated with optical sensory information for computing the kind of 

assistance to be provided. On the other hand, the use of supervisory control i.e. human-in-

the-loop for physical control of the robot arm presents the possibility of introducing 

instability during task execution if the proper control action is delayed or the update rates 

are not consistent.  It is desired to integrate a supervisory control (human-in-the-loop), in 

which the human is in control, and at times, might switch to autonomous control mode, 

scaling or virtual fixture teleoperation modes, in an accurate and deterministic fashion, 

for enabling stable control of the teleoperation while allowing sensor-based motion 

guidance. 

The development of a hard real-time telerobotic controller with haptic and 

sensory integration requires that the generated assist functions are fully integrated in the 

control system.  The implementation of hard real-time control algorithms is a 

fundamental step for the development of sensor-based assistive technology in such areas 

as rehabilitation and related training, surgery, defense, and assistive technology 

applications.  During the user's interaction with real and virtual objects the haptic 
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response needs to be in real-time, allowing operation in a complex environment and 

providing user motion assistance during task execution.  In this context, hard real-time 

means that all the timing constraints of the system are met every time.  Besides the 

autonomous operation mode, others operations are implemented in position and velocity 

control modes by the implementation of regular, scaled, and virtual fixture teleoperation 

modes.  In any of those control modes, the stability and predictability of the telerobotic 

system response depends on strict timing requirements.  In order to satisfy the response 

time constraints for telerobotic system with sensor-based assistance, a flexible real-time 

and a multithreading approach are needed.  The PC-based multithreaded architecture 

allows designing and implementing telerobotic tasks with additional capabilities for 

assistance and haptic manipulation of target objects. 

 

1.2 Visual and Haptic Feedback 

The integration of visual and haptic information is particularly difficult because of 

the different nature of the sensory signals.  On one hand, the human brain can easily 

interpret continuous motion from visual signals being updated from 24-30 frames per 

second.  On the other hand, the human sense of touch is much more demanding in terms 

of consistent timing and update rates.  It is known that in order to generate a realistic 

sensation of touch the update rate must be at least 1000 Hz consistently to have rigid 

body sensations in the user‟s hands [1, 2].  A haptic interface such as the Phantom Omni 

requires a servo loop running between 1000-2000 Hz to transmit the sensation of a hard 

surface to the user‟s hands through its actuators. So, an additional constraint is the 

definition of the limits of the achievable stiffness for stable control of the haptic interface 
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[3].  The restrictions discussed above are very significant in telerobotic applications 

which require continuous control of the robot arm configurations (position and 

orientation) in autonomous or teleoperation modes.  The design and implementation of a 

PC-based platform for sensor-assisted telerobotic system would provide a platform for 

the realization of a hard real-time teleoperation with a haptic interface by combining the 

desirable properties of autonomous and teleoperation control systems.  Since PCs are 

ubiquitous, this platform can be more widely available and not exclusive to researchers or 

those who have access to major computer power.   

 

1.3 Rehabilitation Robotics Applications 

This platform can be used for the implementation and execution of different 

teleoperation tasks. The research environment in which it is realized is primarily 

concerned about the development of new technology or modifications to existing 

technology.  This implementation would assist persons with disabilities to enhance their 

mobility and manipulation using robotic systems.  This field is known as Rehabilitation 

Robotics.  Rehabilitation robotics is a term associated with the use of robotic technology 

to assist persons with disabilities to perform tasks they are unable to accomplish, or have 

great difficulty accomplishing, without external assist methods to guide the user's 

interactions.  Within this context, the experiments conducted to validate the system are 

related to task completion of Activities of Daily Living (ADL) such as pick-up-a-cup.  

Other ADL‟s like opening-a-door, flipping-a-switch, and opening-a-faucet can be 

performed using the system.  The testing of the system is conducted on healthy people 

performing a “pick-and-place” task, which is a common activity of daily living (ADL) 
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task. Three people are trained to use the Phantom Omni interface and to teleoperate the 

PUMA manipulator.  The actual hardware used for performing the experiments include a 

6-DoF PUMA 560 manipulator, a Phantom Omni haptic interface and the sensory suite 

consisting of a CCD camera, a Sick DT60 laser range finder and the PUMA encoders.  

The performance indicators are defined in terms of the "Absolute Position Error" (APE), 

the "Absolute Orientation Error" (AOE) indicators, and the task-completion time which 

are calculated using the recorded data sets for each experiment. 

 

1.4 Dissertation Objectives 

 The major objectives of this dissertation are: 

1. To begin the development of a PC-based hard real-time controller for a sensor-

assisted telerobotic system with a haptic user interface and a 6-DoF slave 

manipulator. 

2. To design a framework that can be useful for rehabilitation engineering, surgery, 

defense, and assistive technology applications. 

3. The integration of visual and haptic feedback to assist the user‟s motion for 

autonomous, and teleoperated manipulation of target objects. 

4. To implement real-time sensor-based assist functions for user‟s motion scaling.  

5. To provide visual feedback combined with scaled teleoperation and virtual 

fixtures or constraints definitions to guide the user interactions while 

manipulating virtual and real objects. 
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6. To implement data structures and communication protocols that allows handling 

interactive simulations, haptic interactions, optical sensors, and robotic 

manipulations in real-time using a PC-based platform. 

7. To develop a virtual reality model to simulate the telerobotic system in purely 

robotic mode and a haptic integrated mode for conceptual testing of the control 

algorithms. 

8. To develop a control strategy based on a "closed form" solution for Puma-like 

manipulators and a "Jacobian-based" control strategy that is expandable to control 

redundant robot arms for which exact solutions are not available. 

 

1.5 Dissertation Outline 

 This dissertation comprises eleven (11) chapters; each one deals with a major 

topic related to the development of the PC-based hard real-time telerobotic control 

system using sensory-based assist functions and the combination of autonomous control 

mode, force-based and motion-based virtual fixtures, and scaled teleoperation.  Chapter 1 

discusses the motivation for development of the system as well as the need for hard real-

time telerobotics control combining autonomous and teleoperation control.  Chapter 2 

gives a background on previous work in the field of robotic teleoperation and assistance.  

The concept of real-time control and multithreading architecture of the teleoperation 

tasks is outlined in Chapter 3.  Chapter 4 contains the basis of sensor-based telerobotic 

control implementation using position-based and velocity-based control modes.  Chapter 

5 describes the mapping of the sensors reference frames and the robot arm reference 

frame required for driving the robot arm using teleoperation with human-in-the-loop and 
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autonomous mode.  Chapter 6 describes the sensor-based assistance functions for motion-

dependent feedback.  Chapter 7 explains the experimental methodology for performing 

the experiments and a definition of the performance measures utilized.  Chapter 8 

describes the virtual reality simulations developed for testing and debugging of the some 

of the algorithms implemented for the telerobotic and haptic system interfacing.  Chapter 

9 outlines the experiments conducted to show the control of the physical system and 

discussion of the results.  Chapter 10 concludes the dissertation work with 

recommendations, and suggestions for future work are outlined in Chapter 11. 
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Chapter 2 

 

Background 

 

2.1 Introduction 

Teleoperation tasks executed with the assistance of a haptic interface controller 

require controlling the position and orientation of a multiple degrees of freedom 

manipulator.  Multiple joints of the manipulator are moved in a continuous way in order 

to obtain a particular configuration of its end-effector.  The required tasks for the haptic 

interface, in general, are to follow a prescribed path, to provide force reflection through 

the device actuators, impedance simulation using simple mathematical models such as 

spring-type forces, and obstacle avoidance [4] [5].  These tasks are implemented with a 

human-machine interface which requires the user to be always-in-the-loop (supervisory 

control).  In this work, a combination of supervisory control and autonomous control 

modes are implemented which requires the integration of haptic interfacing techniques 

with sensor-based assist functions (SAF's) and stable transitioning between control 

modes.  The purpose is to reduce the burden of the user by eliminating the requirement of 

the user being "always-in-the-loop" and to provide assistance to guide the user using 

scaling and virtual fixtures.  The concept of human-machine interactions combined with 

the concept of extending user‟s manipulation capabilities has been the topic of intensive 

research [6] [7] [8] [9].  The integration of sensory information to assist the user‟s motion 

by the generation of scaling and virtual constraints demands a consistent and stable 

timing response.  The need for predictable performance is a key factor in the ability of a 
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hard real-time system to meet the application's response-time requirements for such 

applications.  This chapter describes previous work done in the teleoperation and 

assistance areas.  Also a summary containing the differential features of the system 

described in this dissertation is presented at the end of the chapter. 

 

2.2 Teleoperation Robotics 

 Teleoperation refers to the concept of extending a person‟s sensing and 

manipulation capability to a remote location [10]. It was first described by Ray Goertz 

who designed mechanisms such as mechanical pantograph devices to allow radioactive 

materials to be handled from a safe distance.  Even though it was not a robotic 

application, it introduced a way for expanding research work in this direction.  As 

teleoperation technology developed, the mechanical linkages were replaced by electrical 

servos and cameras replaced direct viewing, allowing the operator to be located 

arbitrarily far away. A more detailed description of several teleoperation types of systems 

and concepts are defined in the area of remote manipulation technology in [10].    

 The basics of computer-aided teleoperation technology were established around 

1965-70 when robotics applications were implemented with the aim of increasing 

dexterity and manipulation [11].  In the early stages of the development of teleoperation 

technology, the primary applications appear in the area of nuclear waste handling and 

decommissioning, handling toxic chemicals and radioactive materials. The human 

operators were provided with visual aid through video displays, and operate remotely 

located slave robot via a hand controller, but not assistance was provided to them to 

effectively complete the task.  The idea of supervisory control (which combines human 
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and computer control)  became apparent when researchers started to question how to 

teleoperate vehicles on the moon through the unavoidable time delay of three tenths of a 

second for the radio signal round trip to the Moon [10, 12, 13].  Early applications of 

teleoperation in space were basically implementing time delays in the control system 

where a human was remotely controlling a vehicle without force feedback or motion 

assistance.  The time delays still continue to be a problem in space teleoperation for 

exploration.   

 In 1985, another area of research was developed to find ways to remotely operate 

underwater vehicles (RUV's).  At that time, a RUV named Jason was used for exploring 

the sunken Titanic cruise.  The control system of the Jason was designed by Yoerger [14] 

and it was tele-operated from the ARGO towed imaging platform from the surface.  This 

system integrated a vision system to assist the researchers from surface during the 

underwater exploratory task. Nowadays, the underwater exploration system is commonly 

known as the ARGO/JASON system [15].     

 The term teleoperation typically refers to systems in which the human operator 

directly and continuously controls the remote manipulator or telerobot.  In these systems, 

the kinematic chain manipulated by the operator is referred to as the “master”, while the 

remote manipulator is referred to as the “slave”.  However, it is also used to define 

different levels of “autonomy”.  From this point of view, a “telerobot” is classified into 

two types [16]: 

1. Tele-autonomy: refers to the combination of teleoperation and autonomous 

robotic control. In some cases, a unilateral controller is used where there is no 

feedback information from slave to master or from master to human. 
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2. Tele-collaboration: means that all operations are controlled by the human- 

machine interface, usually in the form of force reflection.   

 A teleoperation control system can be unilateral or bilateral depending on the data 

flow. In the case of a unilateral controller, the robot arm is operated as an open-loop 

system. If the master and the slave are physically separated, there may be a video 

feedback of the slave executing a task or even no video if the master and slave are in 

operator‟s viewing area.  On the other hand, bilateral control provides force feedback to 

the teleoperator, thus forming a “kinesthetic” or “tele-presence” system [17, 18, 19].  In 

this case, human decisions are merged with the computer generated assistance to allow 

for complex forms of automatic control. The control system adds velocity/force inputs to 

those from the master in the impedance-controlled formulation to assist the motion of the 

manipulator.  Bilateral impedance control allows force reflection to be provided to the 

operator during task execution [10, 20, 21]. In [18] Dubey et al proposed the variable 

impedance method where the impedance parameters are adapted to variable 

circumstances thus overcoming the conflict problem of choosing desired dynamics 

parameters. This controller is primarily used in tasks requiring contact, such as needle 

inserting into tissue or surface exploration.  Teleoperation system design usually takes 

operation accuracy into account, not the convenience and simplification of the operation. 

With the improvement of the controller architecture and assistance attempt [22], the task 

performance of telerobotic system in rehabilitation engineering is still not satisfactory 

[23, 24, 25].  As explained in [26], for a simple “go get a cup and put it on a pad” task, it 

takes the operator an average of 50 seconds, mostly due to indexing the master once it 

reaches its workspace limit and tuning the gripper to grasp the target. Furthermore, the 
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performance largely depends on the operator's familiarity with the system. In most cases, 

using a robot as a teleoperated device to complete a task is much harder than using 

human arm and hand. It can soon become very exhausting, especially if it has to perform 

repeated tasks such as feeding, even with some assistance. Many researchers tried to 

improve the operation accuracy, reduce execution time and relieve the operator's mental 

labor through adding artificial intelligence (AI). Kawamura et al [27] looked at how far 

rehabilitation robots had come in possessing abilities that relieve the user from the mental 

burden of controlling the robot. This AI-based system contains modules for a voice-

activated user interface which is capable to interpret fuzzy commands such as "move 

closer", "go slower" or "move a little bit faster".  These "fuzzy terms" can be recorded 

through a macro action builder (similar to a script) which enables the user to specify a set 

of commands to perform a task.   The macros can be replayed later as a high-level action 

commanded by the user.  As described in [27], the system has the capability to plan the 

actions to take in order to achieve a goal by learning the preconditions and effects of 

those actions obtained through the macro builder interface.  The utilization of sensors in 

intelligent telerobotic systems, such as vision-based assistance, has improved the 

operation of aligning the end effector with the target [28, 29] where the visual 

information is used as part of the user interface in the form of visual cues for guiding tool 

in order to reach a goal.  This dissertation extends the utilization of sensors to the 

calculation of the assist functions to guide the user while following a trajectory as well as 

to align the tool (a Barrett hand) with the target. 
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2.3  Teleoperation Assistance 

 In a telerobotic system, a human operator controls the movements by sending 

commands or signals to the robot.  In the last decade, developments in computer and 

communication technology have enabled the integration of the teleoperation robotics 

(telerobotics), sensory information, and haptic interfaces in such areas as rehabilitation, 

training, surgery, research, device testing, and assistive technologies development.  These 

developments have allowed further development of the assistance algorithms to map the 

master commands to the slave in a way that scales up or down depending on the task and 

environment information (the scaling factors vary accordingly).  

The assistance function concept consists of the generalization of position and 

velocity mappings between master and slave manipulators of a teleoperation system. It 

can be classified as regulation of position, velocity and contact forces. All of these 

assistance strategies are accomplished by modification of the control law parameters of 

simple mathematical models of spring-type and damping-type forces. A simple form of 

position assistance is scaling, in which the slave workspace is enlarged or reduced as 

compared to the master workspace. The velocity assistance is commonly used in 

approaching target and obstacle avoidance. In both cases, the velocity scaling varies 

according to whether motion in that particular direction is serving to further 

accomplishing the desired effect of the motion. 

 

2.3.1  Position-Based Assistance Functions 

 In these functions, the motion of the manipulator is constrained to lie along a 

given line or in a 2D plane.  Figures (2.1a) and (2.1b) illustrate the situation of the linear 
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and planar constraint definitions, respectively.  A detailed explanation of the position-

based assist functions can be found in [30]. In these particular functions, the force 

feedback is transferred to the user through the haptic device itself. This way the haptic is 

used as the actuation device to generate the force reflection as well as a positional sensor 

to measure the relative position between a trajectory point and the "tip" of the haptic 

device.  This information is then compared with the external sensory information to 

correct for possible deviations from the intended trajectory.   

 

 

Figure 2.1  (a) End-effector Constrained to Motion on a Linear Path  (b)  End-effector 

Constrained to Motion on a Plane 

 

2.3.2  Velocity Scaling Assistance Functions 

 In these functions, the level of assistance is based on velocity scaling according to 

whether the motion improves in the direction intended. In the approaching assistance 

mode, the velocity is scaled up (in free space) if the motion reduces the distance between 

the current and goal positions of the robot arm. Otherwise, the velocity is scaled down. 
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Figure 2.2 shows scaling factors used for velocities scaling from previous work done in 

the Rehabilitation Robotic Lab [30]. 

 

Figure 2.2 Scaling Factor Functions [26] 

 From this figure it can be observed that the change of the scaling factor depends 

on the proximity to the goal and the direction of motion.  This same approach was used 

by Everett, who designed a vision-based mapping to align the end effector of the slave 

manipulator with a cross object [28, 31].   

 This is similar to what occurs using a Laser Range Finder readings and a vision 

system. Figure 2.3 shows how a velocity scaling factor varies based on the distance 

reading when the end-effector is approaching a wall.  Using a vision system, the 

velocities that reduce the alignment error are scaled up and the ones that increase the 

alignment error are scaled down (Figure 2.4). 
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Figure 2.3 Scaling Factor Based on Laser Range Finder Reading [31] 

 

Figure 2.4 Cross Alignment Task Adapted from [31] 

2.3.3  Virtual Fixture Assistance Functions 

 Another form of assistance used in tele-collaborative system is called “virtual 

fixtures” where the function parameters are time invariant and only vary according to 

spatial parameters.  A canonical definition of virtual fixtures can be found in [32], as 

“abstract precepts overlaid on top of the reflected sensory feedback from a remote 

environment such that a natural and predictable relation exists between an operator‟s 
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kinesthetic activities (efference) and the subsequent changes in the sensations presented 

(afference)”.  As an example, a virtual 3D wall can be defined as a “fixture” to assist in 

linear trajectory following by creating a stop constraint to prevent a collision with a 

desktop.  In teleoperation, a virtual fixture can be defined as a computed-generated 

spatial constraint that imposes positional or force limitations to a robot arm or operator 

movements. In practice, virtual fixtures are used to constrain a haptically controlled 

manipulator‟s motion along a desired path or to align the manipulator‟s end effector with 

a task [19, 33, 34, 35]. Usually, the stiffness coefficient along the desired path and 

stiffness orthogonal to the path are different. The stiffness ratio indicates the softness or 

hardness of the fixture.  If the stiffness ratio is close to zero, it is the hardest fixture, 

which means that the end-effector can only move along the path without deviation. If the 

ratio is close to 1, it is the softest fixture, where the end-effector can move freely and it is 

usually used for trajectory following. 

 Virtual fixture can also be in the form of potential force fields [32, 36]. Potential 

fields are used to produce velocity commands, which, when added to those generated by 

the input device, maneuver the manipulator toward the target or away from obstacles 

[36].  Figure 2.5 shows that extract and insert fixtures restrict the motion of the end-

effector when it is close to the tool grasping position. This behavior is implemented in 

order to avoid a collision of the manipulator with the tool, while allowing the operator to 

quickly reach the grasping position [36]. 
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Figure 2.5 Force Clues Generated by Position and Approach Fixtures (Left). Fixtures 

Restricting Degrees of Freedom (Right) [36] 
 

 

The guiding force in this field is calculated using a potential function. This force 

can be attractive or repulsive, between the computer-controlled path following and the 

deviation from this path caused by the user input.  To further explain this, the Lenard-

Jones potential function is used here as an example.  

The Lenard-Jones potential function is used in physics simulation of attraction or 

repulsion of atoms in Solid Mechanics.  The acting regions of the force field are shown in 

Figure 2.6.   The Lenard-Jones equation represents the inter-atomic potential energy, U, 

and is given by: 

 

mn r

B

r

A
U          (2.1) 

 

In Eq. (2.1), r is the distance between atoms, and n, m, A, and B are constants.  

The first term in Eq. (2.1) represents the attraction force component, while the second 

term represents the repulsive force component.  In order to compute the inter-atomic 

force between two atoms, the derivative of the potential energy is required as follows: 
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As can be observed from Eq. (2.2), the Lenard-Jones potential function can be 

used to avoid obstacles if the A parameter is made equal to zero (i.e., zeroing the 

attraction component) and keeping repulsion component only.  On the other hand, if the 

parameter B is zeroed, then the potential function can be used to create a “stick” effect.  

In practice, boundaries defined around the desired path are created to act like virtual 

walls for guidance as explained above. 

 

 

Figure 2.6 Lenard-Jones Potential Functions 

 

2.4  Teleoperation in Real-time 

 There are several PC-based robotic control systems. Among these are QMotor 3.0 

and QMotor RTK software packages developed by Costescu et al [37]. These packages 

use Object Oriented (OO) methods such as inheritance and polymorphism and a 
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Client/Server approach for asynchronous communication between different classes of 

services at the hardware and software control levels. The Operational Software 

Components for Advanced Robotics (OSCAR) framework is another program that uses 

OO framework for the development of control programs for robotic manipulators [38].  

This particular software was developed as a set of GNU C++ classes for the Sun Solaris 

OS for graphical simulation and for VxWorks real-time OS for graphical and physical 

robot controllers.  These two frameworks are useful for the control of the robotics 

manipulator as traditionally performed either through a GUI or manual input from the 

user using a keyboard.  The QMotor RTK, for example, works exclusively at the joint 

level of the robotics arm and does not support a haptic application interface or sensor-

based control. 

The Open Robot Control Software (OROCOS) project is an open-source 

framework which runs on Linux OS named Linux RTAI (Real-Time Application 

Interface for Linux).  This platform is a multi-purpose and modular framework for robot 

and machine control [39].  Being designed to work under Linux OS, the framework is not 

fully POSIX compliant limiting software portability and interoperability.  At the time of 

this writing, the OROCOS platform does not support haptically controlled teleoperation.  

A more recent system, Microsoft Robotics Studio (MSRS) [40, 41] by Microsoft, 

is based on services-oriented runtime architecture designed to run on Microsoft operating 

systems. MSRS allows asynchronous applications to communicate through Web-based or 

Windows-based interfaces developed in C#.  A limitation of the services-based approach 

is that it does not allow for robotic framework integration and the human-machine 

interactions (HMI) through the sense of touch (haptic response) in hard real-time.  In 
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addition, the integration of the sensor-based feedback when it is embedded in the control 

software would be difficult to achieve even in soft real-time. 

A different platform using haptic control is described by Turro et al [42]. Turro‟s 

system was implemented as a client-server system for haptically augmented teleoperation 

using a master/slave scheme. The haptic feedback was achieved by using a slave 

controller consisting of a multi-processor Linux PC  with 4 CPU‟s to control slave and 

one CPU to control the master device (for a total of five CPU‟s).   

 Some existing PC-based haptic systems are used for rehabilitation, but they do not 

integrate sensors and the assistance provided to the user is pre-recorded and, therefore, is 

not calculated in real-time. In [43], Hogan et al described the MIT-Manus, a robot-

assisted therapy implementation aimed at the recovery of arm movement after stroke.  

The system uses a performance-based impedance control algorithm for controlling 

execution of tasks in a 2D plane.  The patient receives assistance triggered by speed, 

time, or EMG thresholds.  Charles et al [44] developed the Robot-Assisted Microsurgery 

(RAMS) telerobotic workstation in collaboration with JPL/NASA to augment micro-

surgical dexterity.  The system includes a 6-DoF robotic manipulator (slave) that holds 

surgical instruments. Motions of the instruments are commanded by moving the handle 

on a master device in the desired trajectories.  The system was designed to assist skilled 

and able-bodied surgeons and is not suitable to assist people with disabilities to execute 

activities of daily living (ADL).   

 A bilateral teleoperation approach was implemented by Everett et al [45], where a 

slave manipulator (7 DOF K-2107 Robotics Research Corporation (RRC) robot 

manipulator) is controlled by tracking the motion of a master manipulator (Phantom 
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device).  When the master touches an object, the slave reflects the forces back to the 

master device held by the operator [46].  It was developed using an SGI workstation and 

ControlShell graphical programming module running in the VxWorks OS. A Hidden 

Mark Model (HMM) based skill learning was developed by W. Yu et al, [47], to provide 

motion therapy using a haptic interface.  This system can be used as a physical therapy 

for upper limb coordination, tremor reduction and motion control capabilities for persons 

with disabilities of the upper limb in a virtual environment.  It was tested in simulation 

using a virtual reality representation of the RRC robotic arm.  Chan et al [17] describes a 

telerobotic system, which includes variable stiffness and damping control schemes to 

control the master and the redundant slave dynamics to suit a given task. The 

functionality of the control scheme depends on sensed and commanded values of force 

and velocity, with no previous knowledge of the environment required.  This prior 

research was not PC-based and not versatile for a wide range of applications.  In 1999 

researchers at the Budapest University of Technology and Economics in Hungary started 

the REHAROB project using standard, full-scale industrial robots for human therapy. 

This project is accounted to be the first in the world to target the use of standard, 

commercially available industrial robot (ABB manipulator) for the physiotherapy of 

spastic hemi-paretic stroke patients [48]. 

 In contrast to these systems, the design described in this dissertation allowed us to 

create a simplified PC-based framework, which can be implemented widely.  A key 

problem addressed is the integration of human-machine interactions combining the sense 

of touch and visual feedback as integral components of the robotic controller 

incorporating the advantages of real-time architecture in a PC-based framework.  This 
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platform provides for the benefits of a research laboratory setup to the user's desktop 

without demanding high-end computer resources.  The autonomous and teleoperation 

control with capabilities for scaling and virtual constraint definitions are implemented 

with the intention of assisting the user‟s motion by removing the restriction of the user of 

always being in the control loop, but keeping the high level decision making capabilities.  

This would result in fatigue reduction for task execution over long periods of time.   

The combined work of Chan et al [17] and Everett et al [28] provided an approach 

for using uncertain sensor data based on the confidence of the measurements defined in 

terms of the mean and the standard deviation.  The application of the assistance strategy 

concentrated on tasks related to radioactive waste tank cleanup.  The nature of the 

associated tasks did not allow for autonomous command execution.  In their work, the 

variable damping algorithm was implemented on a 7 DOF K-2107 Robotics Research 

Corporation, RRC, robot arm with position input from a 6 DOF Kraft master hand 

controller.  The RS232 communication protocol was used to transfer the master controller 

signals to a SGI host workstation.  A conversion from RS422 to RS232 was required 

because the Kraft„s communication protocol is RS422.  The system control software was 

implemented on a Silicon Graphics GTX 340 Workstation with 2-CPUs.  One CPU is 

used for the master controller (6-DoF Kraft hand) and for the graphical user interface.  

The second CPU was used for the slave controller (RRC K-2107) and a low level 

programming approach in “Assembler” language for fast low level communication.  The 

SGI host computer was connected to the RRC servo controller through a Bit3 VME-

Multi-bus adapter. 
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 In the present research work, the implementation of autonomous control and 

teleoperation control aims to facilitate the use of the assistive platform for any user 

making high-level decisions, such as target object selection.  The system is capable of 

generating trajectories and virtual constraints to be used for autonomous motion or scaled 

teleoperation.  This development involves the fusion of the optical sensor datasets and 

handling the transition states between the supervisory control system (human-in-the-loop) 

and the autonomous, sensory-driven control, and vice versa, in real-time.  A summary of 

the demanded requirements is listed below: 

1. The platform for development is a PC-based software controller which responds in 

real-time in robotic and haptic modes.  The implementation runs under QNX Real-

time Operating System (RTOS).  QNX is a fully POSIX-compliant OS. This is a key 

feature because by following the POSIX (Portable Operating System Interface) 

standard, the application is portable to conformal POSIX standard OS.  The following 

POSIX services were used in the current development: 

i. Priority scheduling 

ii. Real-time signals 

iii. Real-time Timers 

iv. Message passing 

v. Thread creation and control 

vi. Scheduling and synchronization of multiple threads 

2. The telerobotic system uses two forms of robotic control:  a closed-form solution of 

the inverse kinematics of the 6-DoF robot arm and a resolved-rate based algorithm.  

Both control strategies include gravity compensation. 
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3. The integration of the sensory data from the camera and laser is handled through an 

optimization solution to minimize the error using the Levenberg-Marquart 

methodology.  The error function is defined by the distance between a given point in 

the world coordinate system and the same point given by the inverse perspective 

projection. 

4. Sensor-based assist functions (SAF‟s) are implemented on a 6 DoF Puma560 robot 

arm with position input from a 3-DoF (force-based DoF) Phantom-Omni haptic 

device.  The SAF helps the user to follow a trajectory path described in terms of the 

sensory input using motion scaling and virtual fixtures. 

5. A low-level network protocol based on UDP (User Datagram Packets) packets 

provides the necessary flexibility, reduced latency, and resources for integrating data 

from diverse sensors.  A single packet contains the vision information as well as the 

laser range finder information.  

6. Rather than using conversion methods between different communication protocols, 

the UDP communication protocol is also used to transfer the master controller signals 

to the PC-based host computer.  Support for TCP/IP streams is also provided. 

7. The communication platform implements features to ensure the order of arrival of the 

data and mechanisms to handle data loses, if necessary. 

8. The design takes into account that sensory datasets will be sent to multiple machines 

at once (for physical and virtual reality simulations) by using the multicast and 

broadcast transmission properties of the UDP protocol.   
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Chapter 3 

 

Hard Real-Time Robotic Controller 

 

3.1  Introduction 

In the particular domain of telerobotics, the human is always in the control loop 

(supervisory control) while the robot arm is used to manipulate objects in a virtual or real 

environment.  However, the users of telerobotic systems tend to fatigue over time and 

their performance is greatly reduced [49].  In these situations, it is useful to provide 

assistance to the user‟s motion and also to provide an autonomous mode of operation to 

reduce fatigue when the system is used over long periods of time.  In this dissertation the 

assistance is provided to the users by the definition of sensor-based assisting or resisting 

forces as the users deviate from a trajectory as well as motion-based scaling and virtual 

fixture teleoperation.  The calculated forces are delivered to the users through the haptic 

device (Phantom Omni) which provides the sensation of touch to the user's hands.   

The integration of haptic feedback and the generation of the assisting or resisting 

forces based on sensory information is a challenge due to the uncertainty in the sensory 

information datasets, the deterministic timing and high frequency update rates for a 

realistic sensation of touch.  In addition to this, the visual information extraction and data 

fusion requires computationally intensive pre-processing for obtaining the digital features 

from the images.  This type of scenario imposes additional constraints in terms of the 

timing response of the system.  This chapter discusses the approach followed in this 

dissertation to deal with the timing constraints and high update rates imposed by 
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separating the computational tasks into different running threads or “multithreading” the 

application with synchronization mechanisms for inter-processing communication to 

achieve real-time performance. 

 

3.2 The Need for Real-Time Haptically Controlled Robotics 

Real-time (RT) systems are defined as those systems in which the correctness of 

the system depends not only on the logical result of computations, but also on the time at 

which the results are produced [7].  Following this canonical definition, a real-time 

operating system (RTOS) is a specially designed operating system that supports real-time 

applications.   

A distinctive characteristic of a RT application is that it must satisfy real-world 

timing boundaries without delays.   In general, the main characteristics of RTOS are:  

1. Respond predictably to unpredictable outside events 

2. Meet timing deadlines 

3. Ability to process multiple threads concurrently 

In actual applications, RTOS specifications do not necessarily mean the response 

must be "fast".  However, the timing requirements to complete the required tasks must be 

consistently accurate and predictable.  If a computer process is designed and expected to 

update its data structure at a specified frequency of 1000Hz for example, the RTOS must 

not delay this process by allowing a low priority process to run first.  In the literature, this 

property of RTOS is called determinism.  When a RT application is running multiple 

threads or tasks concurrently, a running thread will be in control of certain resources of 

the CPU.  The running thread must yield to another thread with higher priority, allowing 
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the higher priority thread to run.  The RTOS provides different mechanisms to handle this 

type of situations in real-time.  Depending on the degree of failure if the system does not 

meet a specified deadline, a RTOS can be defined as "soft" or "hard" real-time operating 

system. In hard real-time systems, if the timing requirements are not met or the 

application response action is delayed for any reason, (e.g., elevators or aircrafts control 

systems) a catastrophic failure might occur. In control systems, for example, most 

applications must strictly meet real-world timing requirements in order to avoid 

catastrophic results.  On the other hand, "soft" real-time systems will accept some level of 

lateness (e.g. a graphical user interface response for online authentication). Failure is not 

classified as catastrophic or incorrect in this case, but as an inconvenient response with a 

possible increased cost over time.   

In the telerobotic application described in this work where sensor-based assist 

functions and haptic feedback are used to guide the user's motion, if the response-time 

requirements are not met, the robot controller will not be able to provide a stable control 

action, or it might be impossible to reach the prescribed destination with assistance.  In 

this case, if the response-time constraint is violated, the result is an unrealistic effect or 

loss of the "sense of touch" in the user's hands.  As shown by Salisbury et al [1], the 

haptic force feedback must be updated at a frequency of at least 1000 Hz consistently 

without delays in order to have a realistic sensation of touch.  Even though the results in 

the haptic case might not be catastrophic, the system is described as a failure because the 

end results are not correct.  Obstacle avoidance might be also an issue when negotiating 

obstacles resulting in a collision.  The need for a predictable performance is, therefore, a 
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key factor in the ability of a real-time system to meet an application's response-time 

requirements.   

The PC-based framework provided by this work allows implementing telerobotic 

applications with deterministic response times.  The platform developed for real-time 

telerobotic, haptic feedback, and sensory data fusion systems is implemented as 

multithreaded application. The robotic system runs on QNX RTOS, which provides hard 

real-time timing, priority scheduling, and multithreading synchronization [50].  The 

haptic and sensory systems run on Windows XP OS, which is an event-driven and not a 

real-time operating system.  The problem of predictability is alleviated by using a 

modified scheduler class developed to handle the high frequency update rates of the 

haptic thread under Windows.  The platform sensory subsystem consists of a graphical 

user interface (GUI) which allows for image acquisition and post-processing.  The laser 

ranger finder datasets are also displayed.   

In this application, when the post-processing phase is completed, a different 

thread is assigned the task to act as a broadcasting server.  This way, the user interface 

continues to be responsive and the display is immediately updated based on the most 

recently available data.  If the data fusion is not programmed as a multithreaded 

application, the sensory subsystem will stop responding properly due to the event-driven 

nature of the Windows OS.  The haptic and the simulation threads run concurrently, but 

they have different update rates, and therefore, the user will have a delayed response or 

an event-mismatching between the visual and the haptic feedback.  In practice, the 

graphical simulation and display requires about 24 to 30 Hz to create a continuous motion 

sensation.   
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3.3 Telerobotic Computational Tasks 

In general, the computational tasks in telerobotic applications include the solution 

of forward and inverse kinematic problems, trajectory generation, and the calculation of 

the associated torques for commanding the motors to reach their destinations.  The 

forward kinematics deals with the computation of the position and orientation of the tool 

frame relative to the base frame [51].  On other hand, the inverse kinematics deals with 

the problem of finding all possible sets of joint angles required to attain the given 

position and orientation of the end-effector of the robot arm [51].  The trajectory 

generation is related to the way a robot arm is moved from one location to another in a 

controlled manner.  Generally, a trajectory planning module is implemented to create 

controlled movements in joint or Cartesian space.  Finally, the torque calculations require 

the use of the kinematics and dynamics of the robot arm to achieve the desired joint 

angles.  However, in practice, a form of linearized controller (Proportional-Integral-

Derivative) is used as an approximation in order to reduce the computational intensive 

calculations required if the kinematics and the dynamics are used.   

These computational tasks lead to the simultaneous motion in 3D space. In 

telerobotics this is achieved by controlling the position and orientation of the tool frame 

necessary to follow a desired trajectory or for reaching a specified point in space [51].  

When the motion of the end-effector of the robot arm is controlled by a haptic interface 

(Phantom Omni, for example), the position and orientation of the end-effector of the 

haptic device (“haptic tip”) must be mapped to that of the robot arm.  The global position 

of the end-effector can be determined from the encoders feedback information located at 

each joint of the robot arm.   
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In the case of joint space control, the direct measurements from the haptic device 

encoders can be used to determine the joint angles which are then mapped to the 

corresponding joint angle of the manipulator.  Given the numerical values of the haptic 

joint angles is relatively easy to map to the manipulator‟s reference frames.  However, a 

more convenient way to map the different kinematics of the haptic and the robot arm is to 

use a Cartesian space solution, specially when the 3D motion of the robot arm is intended 

to be use for the execution of structured tasks.  

 

3.4  Overview of the Robot Arm Controller and Forward Kinematics Equations 

 

 For modeling and controlling the robot arm, the kinematic equations of the links 

of the manipulator are necessary.  These equations are obtained by systematically 

assigning coordinate frames to each link following the Denavit-Hartenberg (DH) 

convention [51].  The procedure described in [51] starts by assigning reference 

coordinate frames to each link starting at the base  0L , which is considered as a fixed 

link, and ending with frame  nL , attached to the robot end-effector of  the Puma 560 for 

which n = 6 DoF.  The following set of rules (0-13) and definitions are considered to 

assign coordinate frames to the links and therefore to determine the DH parameters based 

on Craig‟s notation [51]: 

0. Number the joints from 1 to n starting with the base and ending with the tool yaw, 

pitch, and roll, in the specified order. 

1. Assign a right-handed orthonormal coordinate frame  0L  to the robot base, 

making sure that 
0z  aligns with the rotational axis of joint 1.  Set 1i . 
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2. Align kz  with the rotational axis of joint 1i . 

3. Locate the origin of  iL  at the intersection of iz and 1iz  axes. If they do not 

intersect, use the intersection of iz  with a common normal between iz and 1iz . 

4. Select ix to be orthogonal to both iz and 1iz .  If iz and 1iz  are parallel, point 

ix away from 1iz . 

5. Select iy  to form a right-handed orthonormal coordinate frame iL . 

6. Set 1 ii . If ni  , go to step 2; else continue. 

7. Set the origin of  iL  at the tool tip.  Align 
iz  with the approach vector, iy  with 

the sliding vector, and ix  with the normal vector to the tool. Set 1i . 

8. Locate point ib  at the intersection of ix  and 
1iz  axes.  If they do not intersect, 

use the intersection of ix  with a common normal between ix  and
1iz . 

9. Compute i as the angle of rotation from 1ix to ix measure about
1iz . 

10. Compute id as the distance from the origin of frame 1iL to point ib measured 

along
1iz . 

11. Compute ia  as the distance from point ib  to the origin of frame iL  measured 

along 1ix . 

12. Compute i  as the angle of rotation from 
1iz  to 

iz  measure about ix . 

13. Set 1 ii . If ni  , go to step 8; else stop. 

Figure 3.1 shows the frame assignments and the zero pose configuration of the 

Puma 560 manipulator following the previous rules and definitions.  Once the coordinate 
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frames are assigned to every link on the chain, the transformations between adjacent 

coordinate frames can then be represented by the standard (4 x 4) homogenous coordinate 

transformation matrix, T.  Therefore, the transformation matrix T is a mathematical 

description of the robot manipulator in terms of the DH parameters.  Generally, the DH 

parameters are presented as a table containing one row of four parameters for each joint-

link set with an attached coordinate frame. The DH parameters allow one reference frame 

to be located exactly with respect to the preceding link frame. The geometrical variables 

described by the modified DH parameters convention are presented in Table 3.1.   

 

 

Figure 3.1 Coordinate Frame Assignments to Links of Puma 560 [51] 
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Table 3.1 DH Parameters of the Puma 560 Robot Arm [51] 

Joint i 
1i  

(rad) 

1ia  

(m) 

id  

(m) 

i  

(rad) 

1 0.0 0.0 0.0 
1  

2 
2




 0.0 0.2435 
2  

3 0.0 0.4318 -0.0934 
3  

4 
2

  -0.0203 0.4331 
4  

5 
2




 0.0 0.0 
5  

6 
2

  0.0 0.0 
6  

 

 

Figure 3.2 illustrates two adjacent link coordinate frames,  1iL and iL , on a 

robot manipulator.  The frame  iL  will be uniquely determined from frame  1iL  by the 

definition of the DH parameters ia , id , i and i . The transformation matrix Ti

i

1  

describing the position and orientation of the frame iL with respect to frame  1iL is 

determined (starting from frame 1iL ), as follows: 

1. Translate a distance id from the origin of frame  1iL  in the direction of 1iz axis. 

2. Determine the direction of ix by rotating vector 1ix by an angle i around 1iz . 

3. Translate a distance 1ia  along the vector ix . The position reached defines the 

origin of coordinate frame iL , and the vector ix is also determined.  

4. Rotate the vector 1iz about ix  by an angle 1i  to determine the axis vector iz . 
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Figure 3.2 DH-Based Intermediate Transformations [51] 

 

Symbolically, these four steps can be expressed as [51]: 

       iZiZiXiX

i

i dDRaDRT  11

1



      (3.1) 

In this equation, the rotation matrix  1iXR   defines a rotation about the ix  through an 

angle 1i  and it is obtained as: 

 




























1000

0)cos()sin(0

0)sin()cos(0

0001

11

11

1

ii

ii

iXR



     (3.2) 

The translation transformation matrix along the ix  axis for a distance 1ia  is: 

 

























1000

0000

0010

001 1

1

i

iX

a

aD       (3.3) 

 1iL  

1ix  

1iz  

ix  
iz  

i  

i  1ia  
id  

Rz  

iL  

Px  

Qx  

1iL  

 iL  
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The rotation matrix  iZR   defines a rotation around 1iz by an angle i and is given by: 

 

















 



1000

0100

00)cos()sin(

00)sin()cos(

ii

ii

iZR




      (3.4) 

The translation transformation matrix along the 1iz axis for a distance id is: 

 





















1000

000

0010

0001

i

iZ
d

dD       (3.5) 

By substituting Equations (3.2) through (3.5) into Eq. (3.1) and performing the symbolic 

multiplications yield to the homogenous transformation matrix based on the modified DH 

parameters: 

   
           
           


































1000

coscossincossinsin

sinsincoscoscossin

0sincos

1111

1111

1

1

iiiiiii

iiiiiii

iii

i

i
d

d

a

T






 (3.6) 

Table 3.1 shows the DH parameters at the home position.  The objective now is to obtain 

the corresponding transformation matrices that relate the spatial position and orientation 

of the links connecting all the joints of the Puma 560 manipulator (See Appendix A).  

The transformation of the end-effector of the robot arm is found as: 

TTTTTTT 5

6

4

5

3

4

2

3

1

2

0

1

0

6         (3.7a) 

The final transformation obtained after the symbolic evaluation of Eq. (3.7a) can be 

written as: 
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



















1000

333231

232221

131211

0

6

z

y

x

prrr

prrr

prrr

T       (3.7b) 

where, 

 

    64654155235465423111 scccsscsssscccccr       (3.7c) 

    64654165236465423121 scccsccssssccccsr        

  6523646542331 cscsscccsr           

    65464165236465423112 scsccsssscssccccr        

    65464165236465423122 scscccssscsscccsr        

  6523646542332 ssccssccsr   

  5415235423113 ssscsscccr   

  5415235423123 ssccssccsr   

523542333 ccscsr   

  13234233221 sdsdcacacpx   

  13234233221 cdsdcacaspy   

23422233 cdsasapz     

 

 Eq. (3.7c) represents the forward kinematic equations of the Puma 560 

manipulator.  This is the set of equations used to determine the end-effector position in 

the Cartesian space.  A similar procedure is followed to assign coordinate frames to the 
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sensors (laser and camera) as well as to the object of interest and the workstation.  A 

detailed discussion of the techniques used is presented later. 

 

3.5 General Nonlinear Robotic Model 

 In most practical applications of 6-DoF robot arms, the joint velocities required to 

achieve a predefined configuration (position and orientation) of the end-effector of the 

robot arm at a desired speed are obtained by linearization of the dynamic governing 

equation [52].  The explicit dynamic model solution of the manipulator for controlling the 

robot arm is avoided.  However, as shown by Armstrong et al [52], an abbreviated 

explicit model of the Puma 560 is less computationally expensive which allows for a 

simplified realization.  The equation of motion for the robot arm can be written in terms 

of the 6-dimensional vector of joint positions )(tq , as follows: 

)(),()( qGqqFqVqqM         (3.8) 

where, 

 

16  vector of generalized input forces, 

66)( qM  inertia matrix, 

66V  viscous friction diagonal matrix, 

16),( qqF   vector of Coriolis and centrifugal terms, 

16)( qG  vector of gravitational terms 

 For tracking the desired trajectories in joint space where the joint position )(tq is 

specified, the required generalized input torques to control the robot arm are calculated 

so that all joints are able to reach the prescribed position and orientation at the desired 
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velocities and accelerations (if specified).  Several solution schemes have been suggested 

to reduce the complexity of the solution to Eq. (3.8).  The most commonly used technique 

for the linearization of (3.8) was devised by Whitney [53, 54].  This technique resolves 

the desired end-effector motion into the necessary joint motions reducing the complexity 

of the solution.  This method is known as the Resolved-Rate Method which provides a 

numerical solution in the end-effector space.   

 Considering Whitney‟s solution scheme, the Jacobian and the Inverse Jacobian of 

the manipulator are required to solve the inverse kinematics problem.  The position and 

the linear velocity components or forces components of the robot‟s end-effector are 

specified.  The linear velocity components of the end-effector must be transformed into 

joint velocities, and then into joint positions by simple numerical integration.  Figure 3.3 

shows a simplified diagram of the algorithm where the input to the block diagram 

corresponds to the linear velocity components of the robot end-effector, [51].   

 

 
Figure 3.3 Simplified Resolved-Rate Algorithm Block Diagram 

 

As shown in Figure 3.3, only the position vector )(tq  is known at this point.  The 

6-DoF of the Puma is controlled by six (6) brushed DC servo motors, each coupled with 

an encoder and a potentiometer.  The current angular position of each joint can be 

x  1J  
Inverse 
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)(tqc  
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obtained from the feedback signals from each encoder and potentiometer located at every 

joint.  The required actuator torques  are computed as a linearization feedback form of 

Eq. (3.8) based on the desired positions )(tqd  and the desired joint rates )(tqd
 ; i.e. the 

joint accelerations are not considered ( 0dq ). The computed components of Eq. (3.8) 

are defined as follows [55, 56]: 

16c  computed vector of generalized input forces, 

66)( qM c  computed inertia matrix, 

66cV  computed viscous friction diagonal matrix, 

16),( qqFc
  computed vector of Coriolis and centrifugal terms, 

16)( qGc  computed vector of gravitational terms 

Considering the computed values, the desired driving torque is computed as: 

       )(,)( . qGqqFqVqqKqqKqM ccdvddcc     (3.9) 

where dK  and vK  are the position and velocity gains, respectively.  Eq. (3.9) gives an 

appropriate control action if   0 qqd .  In practical implementation, there will be an 

error value defined as   0)(  qqte dq .  However, assuming that convergence is 

reached, then the elements of Eq. (3.9) would be equal to the actual elements in Eq. (3.8).  

The previous assumption results in the following set of equality constraints: 

)()( qMqM c          (3.10) 
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VVc           (3.11) 

),(),( qqFqqFc
          (3.12) 

)()( qGqGc           (3.13) 

If the constraints expressed by Eq. (3.10) to (3.13) are satisfied, then Eq. (3.9) yields to: 

 

       )(,)( . qGqqFqVqqKqqKqM dvdd      (3.14) 

Equating (3.9) and (3.14) yields to the closed-loop system dynamics equation: 

     0)(  qqKqqKqM dvdd
       (3.15) 

 As can be observed in Eq. (3.15), this simplification does not include the joint 

accelerations, so it represents a set of independent first-order differential equations for 

each joint of the manipulator.  The response characteristics of the systems of differential 

equations can be adjusted by the proper selection of the gains dK  and vK .  Eq. (3.15) can 

now be expressed as function of the error qe  and the error rate qe  as: 

0 qvqd eKeK          (3.16) 

 Eq. (3.16) represents a linearized feedback form and it will be valid as long as the 

joint positions )(tq  converge to the desired joint positions )(tqd .  In this research work, 

the actual implementation of the manipulator‟s controller includes the gravitational term, 

)(qG  and the closed-loop system with a Proportional-Derivative (PD) feedback control 

law becomes: 
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    )(qGqqKqqK dvdd         (3.17) 

The PD controller with gravity compensation produces a global asymptotically stable 

closed-loop system through appropriate selection of the proportional and derivative set of 

gains [57] as long as the configuration of the robot arm is not singular.  The calculation of 

the gravitational compensation terms requires the inertia values as well as the locations of 

the center of gravity of every link of the manipulator.  Those parameters were 

experimentally determined by Armstrong et al [52] for the Puma 560 and are presented in 

Table 3.2.   

 The use of Lagrange‟s equation facilitates the derivation of the gravitational 

terms. The calculation of the required torques to compensate of the gravitational action 

will be a function of the joint-space configuration (pose) of the manipulator and the 

gravitational constant, g.  The kinetic iK  and potential iL energies for each link can be 

expressed in terms of the joint variables iq  and the link mass lim located at the respective 

center of gravity of the link.  The gravitational components will appear naturally in the 

final manipulator dynamics equation in the standard form given by Eq. (3.14).  A detailed 

explanation of the procedure can be found in [52]. 
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Table 3.2 Link Mass and Center of Gravity Locations [52] 

Link i mass 

(kg) 
xr  

(mm) 

yr  

(mm) 

zr  

(mm) 

1 - - - - 

2 17.40 68 6 -16 

3 4.80 0 -70 14 

4 0.82 0 -143 14 

5 0.34 0 0 0 

6 0.09 0 0 32 

Detached wrist 2.24 0 0 -64 

 

 In this research work, the gravitational compensation is applied to every joint of 

the manipulator.  Using the DH parameters from Table 3.1 and the link mass and center 

of gravity locations from Table 3.2, the gravitational constant components  6...1ig i  

corresponding to each joint are found to be: 

  
  

 
 

  665

65434

223

444654332

22265431

zl

lll

yl

zllllyl

xlllll

rmgg

mmmagg

rmgg

rmdmmmrmgg

rmammmmgg











    (3.18) 

 

The gravitational terms as a function of the position vector G(q) can be obtained as 

follows: 

0
1
g                       (3.19) 

 5423523523423232212
scccsgcgsgsgcgg 

     
 542352352342323

scccsgcgsgg         

542354
sssgg            

 542352355
scsscgg           

0
6
g  
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 Substituting all the terms in Eq. (3.19) into Eq. (3.17) gives the mathematical 

expression for calculating the driving torques of the manipulator in terms of the joint 

angle values at each time interval. 

3.6  Generic Architecture for a Real-Time Robotic Controller 

The components of a robotic system (robot arm, controller, sensors, user 

interface/input, signal conditioners, and amplifiers) must perform different activities and 

interchange information among different modules of the system to accomplish different 

desired tasks.  This section describes the multithreaded PC-based implementation of a 

real-time controller for a haptically interfaced 6-DoF robot arm. To accomplish this, the 

feedback signals from the haptic device as well as the sensory information must be 

transferred to the arm controller in real-time in a deterministic fashion by the host 

computer.  

The nature of this application demands a real-time response in order to be usable 

for enhancing the manipulation capabilities of users in cases where the haptic interface 

provides force feedback and is an integral part of the robot arm controller.  For this to be 

possible, it is not acceptable to have delays in the haptic response.  For example, it is not 

acceptable that the haptic device tip penetrates the rigid body rendered in the graphical 

scene during a haptic cycle [58].  In the other hand, the integration of sensory-assisted 

functions, SAF‟s, to assist the user‟s motion to execute a particular task requires the 

sensor datasets to be also available in a deterministic fashion even though the sensor 

update rates are smaller than the robotic control signals.  In the case of humans, it has 

been determined that the transmission of realistic sensation of touch occurs at frequencies 
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over 1.0Khz [1, 3].  This corresponds to what was previously stated, the update rate of the 

feedback signals from the haptic device must be at least 1000Hz (1.0Khz) in order to 

generate rigid body sensations in the user‟s hands [1, 2].   

An additional constraint of this type of application is the definition of the limits of 

the achievable stiffness in the environment for stable control of the haptic interface [3].  

The platform implemented must ensure that the transmitted signals and the computed 

output torques are not delayed by a variable amount of time depending on the CPU 

system loads.  To satisfy the forementioned requirements for any haptic control system 

for telerobotics applications, the following threads were defined:  

1. The determination of the target position (in Joint or Cartesian space) from the 

haptic device interface,  

2. The computation of the joint angles to reach the desired position, 

3. A trajectory generation thread which computes position set-point commands, and  

4. The computation of the torques (a PD software controller with gravity 

compensation) required to drive the motors (manipulator control program) based 

on the positional error signals.  The error-based control signals of the robot arm 

(used for Joint-Torque actuation control) are computed at the same update rate as 

the haptic signals. 

It must be taken into account that since there are multiple threads running at the 

same time, there is a chance of conflict when accessing shared memory or data structures. 

For example, the case when one thread is writing data to the memory and a second thread 

is reading from that same memory. In order to avoid data corruption (“mutual 

exclusion”), a synchronization method is required to ensure exclusive access to shared 
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resources.  QNX RTOS was chosen for this platform because it is a fully compliant 

Portable Operating System Interface (POSIX) operating system and it provides multiple 

synchronization primitives, such as mutexes, real-time semaphores, conditional variables, 

joining, and barriers [50]. The POSIX standard is maintained by the IEEE and it is 

recognized by ISO and ANSI. All of these primitives implement mutual exclusion but 

have varying performance benefits and usage models [59].  The synchronization 

mechanism implemented is based on real-time semaphore signals and message passing, 

[50, 59].   

 Figure 3.4 shows the multithreaded architecture of the telerobotic control system.  

As shown, only the robotic controller side of the design is illustrated in this figure.  

 

Figure 3.4 Multithreaded Robot Arm Controller Architecture 

 

The telerobotic control system implemented in this work requires the interaction 

of three fundamental components or subsystems:  sensory, control, and actuation 

subsystems.  The sensory subsystem handles the measurements of physical quantities and 

“state” of the environment.  At this level, the camera and the laser input, the joint encoder 

readings, as well as the haptic interface information, are gathered and processed.  The 
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control subsystem uses the sensors input to compute an action command to drive the 

actuators. The actuation subsystem (motors and transmission mechanisms) is responsible 

for physically changing the manipulator position and orientation.  In order to control the 

robotic system and to achieve a desired configuration, the sensing and the corresponding 

commanded actuation must meet strict timing constraints.  In other words, the scheduled 

activities of the different subsystems must not be delayed before a relatively short 

deadline for stable control of the robot arm.  So, consistency and predictability are 

fundamental requirements for the sensor-based telerobotic control system to be 

“controllable”. 

The generic architecture described in the present work is a multithreaded 

implementation, where the shared resources (critical section or region) are accessed by 

multiple threads concurrently.  The QNX thread programming model allows multiple 

threads to access the CPU simultaneously with priority-based scheduling.  This means 

that the kernel will block the threads based on priorities and scheduling policies defined 

for every thread created, [50].  The priority levels are defined by QNX from 0 as the 

lowest priority to 63 as the highest. These priority levels are strictly enforced by the 

operating system.  This way, the thread with the highest priority that is ready to run will 

be running until it is blocked.  At each priority, the threads in QNX are scheduled 

according to one of the available policies (First-Input-First-Output, FIFO, and Round-

Robin, RR).  These policies are only activated when more than one thread is ready to run 

at the same priority.   

Figure 3.5 shows a diagram of the data flow.  As illustrated, threads T1, T3, and 

T4 are at the highest priority which means that they will share the CPU based on the 
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thread‟s scheduling policy assigned to each particular thread, [50].  The scheduler selects 

the next thread to run by looking at the priority assigned to the thread in the READY 

state.  The thread with the highest priority that‟s at the head of its priority‟s queue is 

selected to run.  For instance, as shown in Figure 3.5, T1 is “active” and “READY” to 

run because it has the highest priority and it is at the “head of the queue”.  As stated 

before, the scheduling policy will be applied only when threads with the same priority are 

ready to run and a decision is required.   

 

Figure 3.5 “Ready/Blocked” States, Adapted from [50] 

 

As multiple threads are running at the same time, there is a possibility of data 

corruption.  In this research work, semaphore signals (a variable that indicates the status 

of a shared resource) and message passing [50] is used as the synchronization mechanism 

to prevent data corruption.  The semaphore signaling mechanism used for 

synchronization is set up before starting any of the implemented threads shown in Figure 

3.4.  If any previously defined thread is currently blocked waiting for the semaphore, the 
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next thread to be unblocked is determined in accordance with the scheduling policy 

defined for the blocked thread.  If the situation arises where multiple threads are blocked 

waiting for the semaphore, then the highest priority thread that has been waiting the 

longest is unblocked; i.e. access is granted based on priority and scheduling policy.   

In general, when the supervisory control scheme (“human-in-the-loop”) is used, 

the sensory information can be used for adjusting the trajectory of the end-effector of the 

robot arm to guide the user‟s motion through a haptic interface.  In order to combine the 

camera, the laser, encoder readings, and haptic sensory inputs to assist the user during 

task execution, the telerobotic system must meet tightly defined response constraints to 

avoid instability caused by time delays such as oscillations, collisions, and the loss of 

rigid body sensations while touching objects. The correctness of the system response 

depends not only on the logical result of computations, but also on the time at which the 

results are produced [7].  At the control level of the telerobotic system, the different 

computational processes to execute a particular motion in 3D space, such as trajectory 

following and the required torque computations need to interchange information.  In this 

work, multiple threads were designed to handle the signals of the robot controller as well 

as the visual and haptic information.   

The following is a summary of the key aspects of the generic architecture for the 

real-time telerobotic controller proposed in this work.  The real-time application design 

enables the possibility to communicate between different running threads. This allows the 

different subsystems to interact with each other and share the same data structure.  Even 

though this inter-process communication is a highly desirable design feature of the 

telerobotic system, there might be a chance of data corruption when a running thread 
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attempts to change data while another thread is using the same data. For instance, when 

the “Trajectory Generation Thread” is accessing its data structure for writing and the 

“Torque Generation Thread” is accessing the same data structure for reading. In such 

case, the concept of “mutual exclusion” of the data can be accomplished in RTOS‟s by 

the use of real-time semaphores (a variable that indicates the status of a shared resource) 

without affecting the responsiveness of the operating system [50].  Another important 

aspect is the preemptive scheduling of threads based on predefined priority level of each 

thread. 

 Figure 3.6 illustrates the integration of the different subsystems encompassing the 

system architecture.  As shown, the system conforms to a modular design which 

facilitates scalability and application of the multithreading programming paradigms to 

other telerobotic applications in rehabilitation, training, surgery, defense, research, device 

testing, and assistive technology solutions. 

 

Figure 3.6 Block Diagram of the System Architecture 
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3.7   Cartesian Trajectory Generation Thread 

 The trajectory generation thread solves the inverse kinematic equations of the 

robotic arm for non-redundant robot arms and an inverse Jacobian approach for 

redundant robot arms, as discussed later this section.  For the case of the Puma 560, both 

implementations are available in the proposed system.  The inverse kinematics solution 

gives the joint values corresponding to positions and orientations of the end-effector.  For 

the non-redundant case, the trajectory generation thread is composed of the following 

steps: 

1. At every time step, define ttt  . 

2. Obtain the position and orientation of the end-effector corresponding to the 

desired trajectory function (a straight-line, for example) as explained below. 

3. Solve the inverse kinematic problem to obtain the joint values corresponding to 

the position and orientation obtained in (2). 

4. Compute the driving torque based on the controller scheme being used.  In this 

particular implementation a Proportional-Derivative-Plus-Gravitational 

Compensation. 

5. Send the computed torques to the robotic controller. 

6. Repeat the loop until the final destination is reached. 

  

 The straight line motion in the trajectory generation thread is accomplished by 

computing the total transformation required to move the robotic arm from point i (defined 

as the initial) to j (defined as the destination).  Once the total transformation is calculated, 

it must be divided into smaller segments to obtain the intermediate points for a smooth 
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transition.  The total transformation, T, defined between the initial position and 

orientation, iT  and the final position and orientation fT is derived as follows: 

TTT if        (3.20) 

Pre-multiplying by the inverse of iT  yields to: 

TTTTT iifi

11 
      (3.21) 

So, the required total transformation between points A and B is given as: 

fi TTT
1

       (3.22) 

 In order to compute the intermediate points, the total transformation can be 

decomposed into a translation for moving the origin of the initial end-effector frame to 

the destination frame and a rotation about a single axis ̂ to align the end-effector frame 

to the desired goal frame.  In the literature, this method is known as the single-axis 

rotation method [60].  In the method, the translation component can be easily divided into 

smaller linear segments.  However, the rotational components are nonlinear and a 

procedure to ensure orthogonality of the axes is required as well as provisions to avoid 

representational singularities (See Appendix B). 
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3.8 Resolved-Rate Thread 

 This thread deals with implementation of the resolved-rate algorithm described in 

[53, 54, 56].  The joint velocities are determined from the Cartesian velocities as follows: 

XJ         (3.23) 

where, 

 16  desired vector of joint velocities,  

16X : commanded vector of Cartesian velocities (from the haptic device interface)  

66J : is the pseudo-inverse of the Jacobian of the robot arm. 

 The pseudo-inverse J  is given by   1  TT JJJJ .  However, rather than 

directly performing a pseudo-inverse calculation, the following relationship is defined: 

yJJX T       (3.24) 

 The 16y vector of independent coefficients can be solved with a LU 

decomposition method avoiding the computationally expensive process of the inverse of 

matrix defined as   1TJJ .  Once the vector y is known, the required angle rates   are 

obtained from: 

yJ T       (3.25) 

 The resulting   is the least-norm joint velocity vector (or joint rate) which 

produces the required end-effector Cartesian velocity vector X , [56].  The numerical 

techniques associated with the calculation of resolved rate algorithm are all implemented 

in C++ to run under QNX. Figure 3.7 illustrates the process. 
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Figure 3.7 Cartesian to Joint Space Conversion in the Robotic Workspace 
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1. The collection of image information and processing:  This thread is responsible 

for capturing the images and image processing (binarization, edge detection, and 

feature extraction). 

2. The laser ranger sensor thread:  This thread reads the analog signals coming from 

the laser sensor.  The output from laser finder is a voltage value which is 

proportional to the range or distance measured.  To have access to this analog 

signal from a PC, it needs to be calibrated and converted to digital signals using 

an Analog to Digital Converter as described in Appendix G. 

3. The haptic Servo-loop thread: This thread implements the haptic effects (spring-

force model, spring-damper model, Coulomb‟s friction, among others) in 

simulation. This thread requires an update rate over 1000Hz for a realistic 

sensation of the particular effect through the actuators of the Phantom Omni.  The 

differential transformation matrices (position and orientation) corresponding to 

the haptic tip are updated at this rate. 

4.  The collision-detection thread (user and virtual objects interaction) 

5. The graphic thread:  displays the 3D virtual reality model on the screen and 

communicates with the haptic servo loop to update the display accordingly. 

6. The communication thread: implements a low-level User Datagram Protocol 

(UDP) packet protocol with provision for data losses and order of arrival of the 

sensory datasets. 

 These threads are run as six (6) separate threads concurrently or simultaneously, 

but with different update rates of their respective data structures.  The sensory datasets 
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fusion as well as the velocity and differential transformations of the haptic end effector is 

then transferred to the manipulator controller.  The QNX software design uses a 

scheduled thread for communication.  This communication thread consists of a low-level 

network protocol based on UDP packets. The UDP protocol is flexible in its data 

structure, it can be extended to prevent data losses, ensure the order of arrival of the data 

transmitted and has reduced latency.  These properties are desirable for transmission of 

data from diverse sensors.  In this particular implementation, a single packet contains the 

data fusion from the visual and the laser range finder information.  The design takes into 

account that datasets could be sent to multiple machines at once (for physical and virtual 

reality simulations, for example) by using the multicasting and broadcasting properties of 

the UDP transmission protocol.  Due to the connectionless nature of the UDP protocol 

and its disregard for network congestion, the derived protocol implements programmatic 

features to assure the order of arrival of the data and mechanisms to handle data loses, if 

any. 

  

3.10 Summary 

 

 In this chapter, the distinctive features of real-time operating system and real-time 

applications are presented in relation to the multithreading tasks of the telerobotic system.  

The forward kinematics of the 6-DoF manipulator is formulated in terms of the 

homogenous transformations and the Denavit-Hartenberg (DH) parameters.  The inverse 

kinematic formulations are developed using Whitney‟s resolved rate approach in order to 

make the solution extensible to redundant robot arms.  A linearized mathematical model 

of the control system is described in terms of the error signals between the actual 
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positions and the desired positions with gravitational compensation.  The implemented 

multi-threading approach is explained and the threads defined for executing a particular 

motion, the trajectory following, sensory data fusion, as well as the torques required to 

drive the arm are discussed.  The multiple threads designed to handle the signals of the 

robot controller as well as the visual and haptic data fusion with provisions for inter-

processing communication; priority-based execution and data corruption avoidance are 

explained. 
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Chapter 4 

 

Sensor-Based Assistance, Autonomous and Teleoperation Control 

4.1  Introduction  

 In general, a telerobotic system consists of a master user-input device operated by 

a human and the slave robot placed at a remote location and controlled using a 

supervisory control scheme.  This form of teleoperation requires the human to be in the 

control loop at all times.  Autonomous and teleoperation control modes enable the system 

to combine human high level decisions with the computer-based intelligence control.  

The idea of incorporating sensor-based assistance to the system is to facilitate task 

executions and to remove the skills required for operating the system.  This work focuses 

on enhancing the capabilities of users using intelligent autonomous and teleoperation 

(telerobotic) control to combine human high level decisions with computer intelligence 

on a hard real-time master-slave system that will help users to execute different tasks in 

an easier and faster manner. The human decision making component comes from locating 

the target objects in the environment using simple sensors and selecting a combination of 

different modes of operation like the autonomous control, scaled, virtual fixture based, 

position or velocity based teleoperation control modes. 

 In this chapter, the concept of assist function is defined in relation to the basic 

haptic parameters and the control law equations required to determine the intended path 

based on the master„s end-effector position and sensory input are outlined.  The different 

operation modes derived from the implementation of the autonomous control mode and 
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teleoperation control scheme are also described.  The concept of the centroid of the object 

used in the derivation of the scaled and virtual fixture constraints is assumed to be known 

and the details of its determination will be presented in Chapter 5. 

 

4.2 Sensor-Based Telerobotic Control Theory 

The sensor-based assistance and telerobotic control implementations depend on 

either position or velocity control variables.  For position-based assistance a simple form 

is scaling, in which the motion of the slave‟s end-effector is scaled up in the desired 

direction and scaled down in any other direction. Similarly, in the case of velocity 

assistance, the velocity is scaled according to whether the motion in a particular direction 

is serving to further accomplishing the desired effect of the motion, for example, when 

moving towards a target object.  For instance, the 3D Cartesian based mapping from 

master to slave makes it very easy and quick for the users to point to objects in the 

environment with the laser range finder. Once the object is located by pointing the laser, 

it is locked by the system by the press of a key and then the slave can proceed towards 

the object in automatic mode or by teleoperation. 

 

4.2.1  Autonomous Control Mode 

 Before the activation of the autonomous control mode, the user points the laser to 

an object in the environment by teleoperating the slave robot arm. Then the user selects 

the automatic mode option to move the gripper towards the object along the linear 

trajectory (line of sight) generated by the laser as shown in the Figure 4.1.  After reaching 
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a certain threshold distance, the arm moves along a secondary trajectory to account for 

the laser offset distance from the gripper as shown in Figure 4.1.  

 

Figure 4.1 Conceptual Representation of Autonomous Control Mode 

 

As explained in Chapter 3, the resolved-rate approach for Cartesian motion is 

used to compute required joint velocities from the Cartesian velocities of the end-

effector. When the user selects the „Automatic Mode‟, a linear trajectory in the form of 

differential transformation matrices at each of the sampling points is computed between 

the current end-effector position and the target object position in hand coordinates.  Then, 

the resulting transformations are transformed to base coordinates before their use in the 

resolved-rate algorithm.   
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If the transformation of the current end effector position with respect to the base, 

obtained from the solution of the forward kinematics of the manipulator, is denoted 

by Ti
0 , then the transformation of the target object with respect to the base Tf

0 can be 

computed by the following operation: 

TTT i

fif *00 
     (4.1) 

where Tif is given by Eq. (4.2) and D is the measured distance from the laser. 

 

(4.2) 

 

 

The equivalent angle-axis method [22] is used for obtaining the rotation part, and 

linear interpolation to obtain the linear part of transformations at the sampling points or 

“via points”.  A Cartesian velocity vector, V, is computed from two consecutive sampling 

transforms taken from the set above every 200 Hz which is the refresh rate of the 

trajectory generation thread, as explained before. If 1T and 2T are two consecutive 

transformations defined as  11111 paonT   and  22222 paonT  , then the 

velocity “screw” approximation can be used to obtain the Cartesian velocity vector V as 

follows: 

 TwvV        (4.3) 

where  

 12 ppv        (4.4) 
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The required joint angle rates are computed using the inverse of the Jacobian of the 

manipulator as follows:  

VJq *1

0


      (4.6) 

After integration of the joint rates, the current joint angles are sent to the “Torque 

Generation” thread to calculate joint torques to drive the arm. 

 

4.2.2  Position-Based Teleoperation Control Mode 

Position-based teleoperation is the default control mode of the telerobotic system. 

In this mode, as the Phantom Omni is moved in its workspace by the user, its 

transformation matrices are computed by solving the forward kinematics problem, and 

mapped to the PUMA base frame. The differential rotations, dR, and differential 

translations, dP, of the Phantom Omni are computed between every two consecutive 

sampling points by (4.7) and (4.8), respectively. 

1*  i

T

i RRdR
     (4.7) 

ii PPdP  1       (4.8) 

Knowing the current PUMA POSE, TP1, the new end-effector POSE of the PUMA is 

computed as: 
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 For teleoperation, a closed-form solution of the inverse kinematics problem is 

used to yield the joint angles which are then sent to the torque generator for computing 

joint torques.  

 

4.2.3  Velocity-Based Teleoperation Control Mode 

In this mode of teleoperation, the Phantom Omni position determines the PUMA 

end-effector speed and direction.  In other words, when velocity control is used, the 

PUMA end-effector speed changes proportionally to the Phantom Omni changing 

position.  When the specified velocity is reached, it is maintained until the command 

from the Omni is changed.  Under velocity control mode, the user will move the Omni‟s 

end-effector once to select a direction and speed for the Puma end-effector.  Then, the 

user will hold the Omni‟s end-effector steady until the gripper mounted on the PUMA is 

close to the target object, then move the Omni‟s end-effector back to its initial position in 

order to stop close to the target. 

The implementation of the velocity-based teleoperation is similar to the position- 

based teleoperation mode except that the differential rotations dR and differential 

translations dP of the Omni are computed between the initial Omni stylus position when 

its button is pushed, and its current position. This way, the Omni pen behaves like a 

joystick; the further the joystick moves away from the center, the faster the PUMA end-

effector moves. This is also suitable to wheelchair bound users who are accustomed to 

using a wheelchair for mobility. 

In this mode, the Phantom Omni end-effector transformation is recorded when the 

user clicks the stylus button.  The recorded transformation is referred to as in (4.10): 
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T     (4.10) 

Again, as the Omni‟s stylus is moved in its workspace by the user, the current 

transformations are sent to the PUMA controller and are mapped to the PUMA base 

frame. The differential translation is computed as:  

  dtVPPdP factor

ref **2      (4.11) 

where  

factorV  =  a constant velocity factor and, 

dt  = the real time clock refresh rate.  

This means that the farther the Omni pen is from the start position, the faster the PUMA 

moves as 
refP is constant and only 2P is updated at the cycle refresh rate.  The differential 

rotation dR is computed as: 

  2** RfactorRdR R

Tref      (4.12) 

where  TrefR corresponds to the transpose of refR and Rfactor is a scaling rotation factor. 

Then, small increments of dR are computed from equivalent angle-axis method and are 

used to transform 
refR at the cycle refresh rate to yield new rotational components of the 

PUMA end-effector transformation. These new transformations are computed in the same 

way as in position-based teleoperation and the inverse kinematics yields joint angles at 

the cycle refresh rate, as explained in Chapter 3. 
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4.2.4  Scaled Teleoperation 

Scaled teleoperation is used to scale up or down the user‟s input for assistance and 

create virtual constraint using the sensory data. After the user selects the target object 

from the environment by pointing the laser, the reference trajectory vector is calculated. 

As the user moves the Phantom Omni in its workspace, the translation vectors viak are 

computed from the Omni‟s tip transformations and sent to the PUMA controller at every 

cycle step. If Pi and Pi+1 are the translation vectors of the homogenous transformations of 

two consecutive Omni‟s tip points, then the translation vector iivia PPk  1 can be 

projected on the reference vector k to obtain a new vector P as follows: 

 
k

k

kk
P via
      (4.13) 

The projected vector resulting from (4.13) is then scaled up by multiplying it by a scaling 

matrix Kscale given by: 
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Similarly, the projections of the current translation vectors are determined on the other 

two axes perpendicular to the reference vector k . However, the components of these 

vectors are scaled down. As the computations continue, nP becomes the new differential 

translation vector computed every cycle.  The inverse kinematics on the new 

transformation yields the new joint angles that are sent to the torque generator as before. 
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4.2.5  Virtual Fixture Teleoperation 

The virtual fixture constraints are created by completely constraining the PUMA 

motion along the reference trajectory vector k locked by the laser. This is done by scaling 

up the components of the current projected vector P on the reference vector k and 

scaling down to zero the components of the current projected vector P on the axes 

perpendicular to k . At the same time, the orientation of the PUMA end-effector frame is 

maintained constant throughout the teleoperation. This way the user‟s motion is 

completely constrained in the Cartesian space except along the axis parallel to the desired 

trajectory. The differential translation vectors to be sent to the PUMA are computed in a 

manner similar to the Scaled Teleoperation discussed in 4.2.3, keeping the rotation fixed 

and the new transformations yield joint angles at the cycle refresh rate to drive the 

PUMA robot arm. 

 

4.3 The Phantom Omni Haptic Interface 

A haptic interface, such as the Phantom Omni, has sensors to measure the (6 x 1) 

vector corresponding to the position and orientation of its end-effector (3 rotations and 3 

translations) as well as the built-in 3-DoF force feedback  
zyx FFF ,, capabilities.  The 

haptic device used in this work is manufactured by SensAble Technologies® and it is 

shown in Figure 4.2.   

The positional feedback is obtained from the encoders placed at the motors and 

the force measurements are obtained from the actuators of the Phantom Omni interface.  

This information can be manipulated to express the assistive forces not just as function of 

the end-effector position of the Phantom Omni (also known as the stylus or thimble), but 
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also as a combination of the latter and external visual information provided by sensors 

such as a camera and a laser range finder.  Assuming that there is an object of interest in 

the field of view of the user, when the user points to the object with the laser, the line of 

sight (LoS), which passes through the centroid feature of the object or region of interest 

and the manipulator‟s end-effector, provides a visual indication of its location with 

respect to a fixed 3-D world reference frame.  On the other hand, if the object of interest 

is partially or totally occluded from the user‟s point of view, the sensors (camera and 

laser range finder) can provide the location of the centroid.   In this case, the “LoS” 

depends on the robot-mounted camera‟s position in space (known as the camera frame), 

the distance and direction of sight.  In practice, there will be measurement errors between 

the desired position and orientation and the user‟s input interacting with the system.  

These error signals can be used to compute force constraints for correcting the deviations 

from the intended path and for guiding the user towards the goal.    

As previously stated, the Phantom Omni shown in Figure 4.2 provides six (6) 

positional degree-of-freedom inputs and three (3) force degree-of-freedom output (See 

Appendix F).  The Omni model allows users to have the “sensation of touch” of virtual 

objects by means of the forces transmitted to the users through the actuators mounted on 

the device.  It allows for the control of the x, y, and z linear components of the feedback 

force, but does not allow for torsional feedback when users rotate the stylus.  The stylus 

has two buttons (white and blue) such that it can be used as a mouse for “click and drag”, 

for example. 
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Figure 4.2 Phantom Omni Haptic Device 

 

 

 The Phantom Omni software uses the OpenHaptics software development kit 

(SDK) that runs on Windows XP OS.  The OpenHaptics SDK consists of a set of two 

libraries known as the HDAPI and HLAPI.  The HLAPI is a high-level library for haptics 

scene rendering. It is best suited for adding haptic interactions to existing OpenGL 

graphics applications. On the other hand, the HDAPI provides access to low-level haptic 

functions to handle direct force rendering to the actuators of the haptic interface.  The 

type of feedback force rendered by the haptic device can be time dependant, motion 

dependant, or a combination of both.  In this work, the motion dependant feedback 

combined with the concept of the sensor-based assist functions is used to control the six 

(6) Puma 560 robot arm in both, joint and Cartesian spaces. 

 

4.4  Joint and Cartesian Control through the Haptic Interface 

 The Puma 560 robot arm can be controlled in joint and Cartesian spaces.  Joint 

space haptic control means that the six (6) joints of the Phantom Omni are mapped to the 

corresponding joint angles of the robot arm.  The forward kinematic equations of the 

haptic and the robot arm are used at this point to obtain a set of joint angles.  After 
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mapping, the manipulator‟s controller is directed to drive the robot arm to the appropriate 

configuration.  Figure 4.3 (c) shows the zero configuration position of the Phantom 

Omni.  When the device is placed as shown in (c), the first three joint angles 

 321 ,,  are zero.  The gimbals' angles of the device are not shown in this 

configuration. On the other hand, Cartesian space haptic control deals with the 

determination of the joint angle values to place the manipulator at a desired position and 

orientation at the specified velocity.  The input velocity components are provided by the 

haptic device, as shown in Figure 4.4.  

 
Figure 4.3 Phantom Omni Reference Configurations  

  

4.5 Telerobotic Control System  

 The control strategy is a form of generalized bilateral control, which maps 

positions and velocity components between the haptic workspace and the Puma 560 

workspace [17].  Figure 4.4 shows a block diagram of the control strategy where the 

linear velocity components of the Omni‟s tip are mapped to the linear velocity of the 

robot arm through the Jacobian uJ .  As shown, the inverse of the Jacobian 
1
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calculation is performed following the procedure illustrated in section 3.5.  This approach 

provides an improvement to the computational efficiency of the control strategy 

algorithm.   

 When joint space control is used, the direct measurements from the optical 

encoders mounted on the haptic device are used to determine the joint angles.  The 

corresponding transformation matrices are then used to represent the haptic's reference 

frame relative to the manipulator's reference frame.  Given the numerical values of the 

haptic joint angles is relatively easy to map to the manipulator‟s reference frames. 

 

Figure 4.4 Telerobotics System Block Diagram 
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4.6 Indexing with the Haptic Device 

 The kinematics of the Phantom Omni is very different from the robot arm 

kinematics that it is controlling.  A technique known as “indexing” is used to extend the 

workspace of the haptic-manipulator interface.  The most appropriate way to implement 

“indexing” is in Cartesian space.  The stylus buttons are used for the user interaction, as 

follows: With the white button, the user can only “drag and drop” the virtual object on 

the screen, just like a standard mouse, to place the virtual object away from the limits of 

the workspace or to re-position the stylus to a more comfortable orientation.  On the other 

hand, the blue button is used to re-engage the motion of the manipulator through the 

Phantom Omni interface.  The implementation of switching between these two “states” in 

real-time is a challenge because, if it is not done predictably, and/or the commanded 

control signals from the haptic are delayed, the telerobotic system can go out of control or 

automatically shutdown.  This safety feature is built in the hardware of the manipulator‟s 

controller in the form of a “watchdog” timer.  In addition, the software controller is 

designed to expect a specified difference between the current and the next commanded 

configuration of the manipulator.  If this difference is outside the specified range, the 

system is shutdown. 

 

4.7 Assistance Function (SAF) Concept 

 As previously mentioned, the haptic interface allows the user to have the 

"sensation of touch" of virtual objects through time dependant, motion dependant or a 

combination of both feedback forces.  The idea of combining those types of forces with 

“force assistance” along a trajectory serves the purpose of augmenting the user‟s 
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dexterity by scaling or by imposing virtual constraints.  Also, attractive or repulsive 

potential fields can be defined as virtual constraints that are implemented in the haptic 

control software to modify the control action provided by the actuators of the haptic 

interface, [24].   

As shown in Figure 4.5, the SAF constrains the motion of the robot arm to a 

desired linear path by constraining the robot end-effector motion along a line defined 

between the initial position of the manipulator and the position of the goal point, both 

defined in Cartesian space.  This way, the calculation of the SAF is based on the 

projected line from the end-effector of the manipulator to the intended destination of the 

user defined by “pointing” to the object of interest or target.  In this discussion, it is 

assumed that the location of the centroid that the user is pointing to is known for the 

development of the assist function equations.  The required computations to identify the 

position and orientation of an object in the 3D space are the topic of the next chapter 

where the centroid location in Cartesian coordinates is the result of the data fusion of the 

optical sensors, camera and laser.   

A common application of the assist function concept results from the situation 

where the object of interest is partially or totally occluded from the user‟s point of view, 

but it is still visible from the sensors point of view (camera and laser range finder 

combined model).  In this situation, the sensors can provide the location of the centroid 

from the images of the object captured by the vision system, the image processing 

techniques (binarization, edge detection, and feature extraction), and the inverse mapping 

solution.  Another application results from the possibility that the user was shaking, due 

to tremor illness, for example, and was unable to point the laser range finder precisely on 
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the object of interest.  In this case, the camera information can be used to determine the 

location of the centroid of the object and the “offset” can be computed to compensate the 

erroneous user input.  During the execution of a task, the user is provided with position 

and velocity based control schemes as well as autonomous control with the possibility of 

switching between them.  For instance, the user may choose to approach the target object 

in autonomous mode and then switch from autonomous to regular teleoperation for fine 

tuning the orientation of the end-effector before grasping.  Any combination between 

regular, scaled, and virtual fixture modes can be selected by the user to complete the task. 

Figure 4.5 Representation of the Sensor-Based Assistance Function 

 

Figure 4.5 illustrates the line of sight vectors defined between the manipulator‟s 

end-effector and the region of interest (ROI).  At this point, there are two types of 

y 

θ1 

Initial 

position 

 111 ,, zyx  

Desired 

trajectory 

 
ggg zyx ,,  

Goal 

position 

tip

initr


 

goal

initr


 

Haptic tip 

Position 

 tiptiptip zyx ,,  

Fhaptic 

Z 

X  zyxP ,,  

D 

d 

End-effector 

Position 



www.manaraa.com

 

 73 

assistive forces.  One type will be attractive or repulsive to assist the user while moving 

along the trajectory path and the second type will assist the user motion to follow the 

prescribed linear path.  The latest updates of the position vector obtained in the haptic 

thread are used to compute the new positions of the virtual object and to display the effect 

of attraction or repulsion. The linear trajectory is defined by the line of sight vector.    

Once the user's motion is along the prescribed path, an assist function is generated to 

guide the user to follow the trajectory with ease. 

 

Figure 4.6 A Set of Line of Sight Vectors (in Red) Placed Closed to the Centroid of the 

Region of Interest (ROI) 

 

 The goal or destination of the robot arm is defined as the centroid of the object of 

interest.  The coordinates of the centroid feature are computed in pixels relative to the 

image plane.  As it will be discussed later, sequences of transformations are required to 

represent the centroid coordinates relative to the world coordinate system.  Also, the 

transformation from image space to joint space of the robot arm requires the knowledge 

of the kinematic equations of the robot arm.  In the case of a robot-mounted camera-laser 
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suite, the visual information is produced as an input signal defined in the image space.  

Therefore, a conversion is necessary for the transformation.  The inverse projection 

transformation obtained from data provided by the sensory suite (camera and laser range 

finder) is used to generate a linear trajectory in joint space using the single axis rotation 

method described in [24].  Since the human is in the control loop, rather than attempting 

to drive the arm along this path autonomously, the difference between this trajectory and 

the user‟s motion as sensed by the haptic device is obtained.  Figure 4.6 illustrates the 

method implemented to generate the linear trajectory in joint-space.    

 

  

Figure 4.7 Line of Sight Using Single Axis Rotation [60] 

 

 In cases where the user wants to switch to autonomous control mode to reach the 

object of interest, a linear trajectory path is automatically generated using the location of 

the centroid of the object calculated using information obtained from the sensor datasets. 
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4.8 Summary 

 In this chapter, the concept of assist function was defined.  The control law 

equations required to calculate the haptic feedback based on the haptic position were 

developed. The connecting line between the end-effector of the robot arm and the 

centroid feature of the image of an object extracted from the optical sensor data fusion 

was developed as well.  Two types of functions to assist the user were described. One 

while approaching the path, and a second for following the prescribed path. The latter is 

given by the “line of sight” connection of the end-effector of the manipulator and the 

centroid of the object of interest.  In order to reduce the burden of tasks execution over 

long periods of time, an automatic mode is developed by the generation of a linear 

trajectory path using the location of the centroid of the object and the current position of 

the end-effector of the manipulator.  In the development of the control law, the location 

of the centroid was assumed to be known. The procedure to extract this information from 

images of the object is the topic of the next chapter as well as the sensor-based assist 

functions calculations. 
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Chapter 5 

  

Visual and Haptic Data for Motion Scaling and Virtual Constraint Definition 

5.1  Introduction 

  

In the previous chapter, the concept of the centroid of the object was used to 

determine the “line of sight” between the end-effector position of the robot arm and the 

object of interest without detailing the procedure followed for its computation. The 

centroid calculation is based on information extracted from images of the object of 

interest which involves computer vision processes such as edge detection and feature 

extraction techniques.  In computer vision, CCD cameras are used as passive sensors to 

extract data from the captured images. The intensity of the light is used to process the 

image information and to extract a model of what the camera “sees”.   In practice, a 

complication arises from the extraction of 3-dimensional coordinates of an object given 

2-dimensional information from the camera‟s image plane.  Data fusion from two 

different sensors (camera and laser range finder) provides a unique solution to the 

problem of reconstructing the 3D object position and orientation with respect to a fixed 

coordinate system based on 2-dimensional datasets. In this combined system, the laser 

range sensor is used to determine the distance to the observed target object.   

 This chapter describes the methodology necessary to calculate the location of the 

centroid and its relation to motion scaling and virtual constraints.  The detailed 

procedures for handling the images, camera calibration, space domain processing, and 
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mapping of the camera frame with respect to the base reference frame of the robot arm is 

also presented. 

 

5.2 Spatial Domain Pre-Processing 

 In order to accurately predict the position and orientation of an object or region of 

interest, the pixel coordinates of the point in 3D given the points in world coordinates 

need to be matched.  To accomplish this, the computation of the internal ("intrinsic") and 

external ("extrinsic") parameters of the camera is required.  The Tsai's camera model as 

described in [62] is used to obtain those parameters. The model includes 3D-2D 

perspective projection with radial lens distortion compensation.  This camera model 

defines a total of eleven (11) parameters:  five (5) intrinsic or internal parameters and six 

(6) extrinsic or external parameters.   

The internal parameters describe how the camera forms an image while the 

external parameters describe the camera position and orientation with respect to the world 

coordinate frame.  The internal parameters include the focal length, the center of 

projection, and the CCD sensor array dimensions and they are specified by the 

manufacturer's design.  The intrinsic parameters might vary from device to device even if 

they belong to the same manufacturing batch.  The specifications might also be affected 

by environmental conditions such as distance between the camera and the scene and level 

of illumination available.   

 The intrinsic parameters are defined as follows [62, 63, 64]: 

1. Principal point  
yx CC , : intersection coordinates of the optical axis with the 

image plane as shown in Figure 5.1. 
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2. Scale factors  
yx dd , : scaling factors for the x and y pixel dimensions; i.e., the 

horizontal and vertical size of a single pixel in engineering units (millimeters, 

inches, meters, etc). 

3. Aspect distortion factor  xs : a scale factor to account for the model distortion in 

the aspect ratio of the camera. 

4. Focal length  f :  defines the distance from the optical center (or projection 

center) to the image plane as defined in a pinhole camera model (this is different 

from the focal length printed on the lens of the camera by the manufacturer). 

5. Lens distortion factor ( 1 ): first order radial lens distortion coefficient. 

 

The extrinsic or external parameters of the camera define the transformation of 

the pose of the camera with respect to a local coordinate system represented by the 

chessboard pattern‟s local coordinate system.  The six (6) extrinsic camera parameters 

are: 

1.  zyx RRR ,,  - defines rotation angles necessary to obtain the rotational 

transformation between the world and camera coordinate frames. 

2.  
zyx TTT ,,  - corresponds to the translational components between the world and 

camera coordinate systems. 

Figure 5.1 shows the assigned frames of the Tsai's camera model.  Calibration 

data for the Tsai's camera model consists of 3D world coordinates of a feature point 

 www zyx ,,  in engineering units (in mm, for example), and corresponding 2D 

coordinates  
ff YX ,  in pixels of the corresponding feature point in the image.   
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Figure 5.1 Camera Model Geometry 

 

As shown in Figure 5.1, a sequence of transformations is required to define the 

relationship between the position of a point P in world coordinates,  www zyx ,, , and the 

same point as projected in the camera reference frame  
ff YX , .  The first transformation 

is a rigid body transformation from the world coordinate system  www zyx ,,  to the 

camera-centered coordinate system defined as  ccc zyx ,, . This transformation is 

expressed as follows: 
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where ijr  are the elements of the rotation (orientation) of the camera  and  Tzyx TTT  

corresponds to the translation vector in the world coordinate system.   

 Once this transformation is known, a second transformation relates the 

 ccc zyx ,,  to the ideal (un-distorted) pinhole camera model  uu YX , .  This is 

accomplished by using the projective transformation formulas.  In other words, the 3D 

camera point is projected into a 2D-plane  uu YX ,  where the subscript u means 

"undistorted", because, at this point, there is no correction for lens distortion of the 

projected point.  The projected transformation is given by Eq. (5.2) and (5.3) as follows: 

c

c
u

z

x
fX        (5.2) 

c

c
u

z

y
fY        (5.3) 

Expanding (5.1) and substituting into Eq. (5.2) and (5.3) yields to: 
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Equations (5.4) and (5.5) represent the undistorted coordinates of the point P.  

Next, the 1
st
 order radial distortion model is applied to transform the undistorted points 

 uu YX ,  to the "true" position of the point's image  dd YX , .  The corrected coordinates 

 uu YX ,  for distortion are: 

   dddu XYXX
22

10.1        (5.6) 

   dddu YYXY
22

10.1        (5.7) 
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Figures 5.2 and 5.3 show some of the results presented to the user through a 

graphical user interface.  Figure 5.4 show the chessboard pattern used for calibration and 

a typical Puma 560 configuration during calibration. 

 

 
 

Figure 5.2 Graphical User Interface with Chessboard Calibration Pattern 

 

 

 
 

Figure 5.3 Chessboard Calibration Pattern at a Different Pose of the Robot Arm 
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Figure 5.4 Calibration Pattern in the Camera-Mounted Field View 

 

As shown in Figure 5.5, a sequence of conversions is necessary to obtain “true” 

representation of the position of the image points and their coordinates in the camera‟s 

image frame  
ff YX , .  

 

Figure 5.5 Distorted and Undistorted Sensor and Image Coordinates 
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These conversions are obtained by the evaluation of Eq. (5.8) and (5.9), as follows [65]: 
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Now, given a set of points of the object of interest in the world coordinate system 

 www zyx ,,  and the corresponding measured position in the image  
ff YX , , after the 

distortion factor has been applied, an error-based objective function can be defined in 

terms of the difference between the point's image coordinates and the coordinates 

predicted by the camera model as expressed in Eq. 5.10: 
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where  
iIiI YX ,  are the observed image positions and  

iPiP YX ,  are the predicted 

positions based on the known 3D world coordinates  www ZYX ,,  after correction of the 

radial distortion.  The solution is found through the use of a nonlinear optimization 

technique known as the Levenberg-Marquardt (LM) method [62, 63, 64] as discussed 

next. 

 

5.3 Numerical Optimization Approach for Estimation of the Camera Parameters 

The nonlinear optimization for the determination of camera intrinsic and extrinsic 

parameters is based on a modified Levenberg-Marquardt (LM) algorithm with a Jacobian 

calculated by a forward-difference approximation [62]. The LM method increases the 

computational efficiency by combining gradient descend and Gauss-Newton optimization 
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methods. Initially, the implementation uses a closed-form least squares estimation of 

three parameters, the focal length f, z-axis translational component zT  and the distortion 

coefficient 1 .  Using the obtained values as the starting point, an iterative nonlinear 

optimization of all parameters simultaneously is executed using the LM algorithm one 

more time.   

The intrinsic camera parameters will be constants when the camera is moved with 

respect to the world reference frame.  However, the extrinsic parameters defined by the 

position and orientation of the camera with respect to the world coordinate system will 

change and, therefore, Eq. (5.1) must be recomputed.  This situation will arise every time 

the user points to an object and/or rotates the haptic stylus, for example.  In this case, the 

knowledge of the extrinsic camera parameters is fundamental to determine the 

transformations required to map the position and orientation of an object with respect to 

the robot arm‟s end effector frame where the camera and laser ranger are mounted.  The 

procedure involves supplying parameters like window size and number of squares along 

each axis (X, Y) of the calibration pattern (chessboard pattern in this work) used for 

calibration and identifying the corners of the calibration grid in each of the images.  

Then, the Inverse Perspective Mapping (IPM) problem can be addressed. 

Figures 5.6 and 5.7 show simulated world-centered and camera-centered 

reference frames, respectively, after the optimization. 
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Figure 5.6 World Centered Camera Calibration using Bouguet„s Toolbox [63] 

  

Figure 5.7 Camera Centered Calibration using Bouguet„s Toolbox [63] 
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5.4   Inverse Perspective Mapping (IPM) 

 The inverse perspective mapping IPM is the key to use the visual information for 

driving the manipulator using supervisory control by the determination of the line of sight 

defined between the end-effector of the robot arm and the centroid of the object of 

interest measured by the sensors.  It can be also used for planning the straight line motion 

of the end-effector in autonomous mode.  The IPM is the opposite problem regarding the 

projective projection used during calibration.  Figure 5.8 illustrates possible errors 

between the calibrated camera model predictions and the actual position of the observed 

image points. 

 

Figure 5.8 Illustration of the Error between Predicted and Observed Image Points  

During calibration, a set of N image points (N > 5) are matched to the 

corresponding points in the world coordinate system and the intrinsic and extrinsic 

parameters required for this matching are calculated.  On the other hand, the inverse 

perspective problem uses the calibration data to determine the position and orientation of 
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points on the image relative to the world coordinate system.  Similarly to the calibration 

problem, the methodology implemented to solve the inverse perspective problem is once 

again the Tsai‟s method [62] and the Levenberg-Marquardt (LM) numerical technique is 

also used to solve the optimization problem in a least-square sense. For the application to 

this particular problem, input to the Tsai's algorithm is the predicted position and 

orientation of the end-effector using the camera and the object position relative to the 

base and data from forward kinematics solution of the robot arm.  Figure 5.9 shows some 

of the coordinate frames assigned in order to obtain the required transformations of the 

points in the image plane with respect to the camera plane. 

 

Figure 5.9 Camera and Image Planes Geometrical Relationships 
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5.5 Edge Detection and Feature Extraction 

 In order to recognize an object from an image, it is assumed that the object can be 

segmented out of the image background after binarizing the captured image. A histogram 

equalization post-processing is performed to make an even distribution of the grayscale 

pixel colors.  For edge detection, the “Sobel” method is used to compute the edges [64] as 

well as the “Canny” method described in [66].  The Canny method is the preferred 

method in this work because it is more efficient in reducing noise from the captured 

image. Both methods are standard image processing techniques; the details of their 

implementations are described in [64] and [66].   

 The methodology for the segmentation is that for each segmented object, the 

feature extraction component of the vision system computes the object‟s geometric 

features, such as the centroid, perimeter, or area.  For the computation of the centroid, the 

following two equations are used: 



n

i

x x
n

C
1

1
 and 




n

i

y y
n

C
1

1
 where x  and y  

represents each individual pixel coordinates, and n defines the total number of pixels in 

the 2D region of interest (ROI) [64].  As a result of the image projection and 

transformation, only 2D datasets are available which correspond to the x-y plane.  

However, in order to drive the robotic system to reach a particular object of interest, the 

triple (x, y, and z) Cartesian coordinates are required.  So, the additional information, 

which corresponds to the z-dimension or depth, is provided by the laser range finder 

measurements. 

 The acquisition and digitalization processes of the images produce distortions of 

the original region of interest (ROI), especially when viewing objects from a large 
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distance.  These distortions increase the uncertainty of the datasets, the complexity of the 

image recognition process as well as the computational expense.  For applications 

involving the location of objects of interest at large distances, the procedure implemented 

provides for distortion removal introduced by the lens and the aspect ratio of the camera, 

respectively.  As stated before, the methodology for the perspective projection camera 

model was devised by R. Tsai [62] and implemented by Bouguet [63] as a MatLab 

toolbox.  This toolbox was used for validating the results of the multithreaded 

implementation of this algorithm which is included as a module of the vision system.  An 

optimized algorithm for the camera calibration is also described in [67].   

 

5.6 Mapping to the Robot Arm Reference Frame 

 In order to use the robot-mounted camera (hand-eye) information and the laser 

range finder sensor for the robot pose estimation, both intrinsic and extrinsic parameters 

of the camera needs to be obtained first.  Then, the transformations for mapping the grid's 

local coordinate system of sensing array with respect to the manipulator's base frame are 

required. It is important to note that, in practice, an intermediate step, known as the pixel-

to-camera transformation, will also be required because points on the object or region of 

interest are known at the pixel level.  This means that image pixel pairs (pixelrow, pixelcol) 

representing row and column numbers, respectively, are available with respect to a fixed 

pixel coordinate frame attached to the sensing array.   

 From Figure 5.2, the geometrical relationships between the coordinate points in 

the camera and image planes can be described.  Note that the origin of the image plane is 

defined at the left-upper corner of the image window.  On the other hand, the origin of 



www.manaraa.com

 

 90 

the camera plane is considered to be at the center of the camera plane (the principal point) 

which corresponds to one of the intrinsic or internal parameter of the particular camera in 

use.  For a robot-mounted camera, the offset between the end-effector of the manipulator 

and the camera is constant (it does not change between views), but it is unknown.  The 

assembled homogenous transformation is then represented relative to the end-effector of 

the robotic arm given their relative position as illustrated in Figure 5.10.  A detailed 

procedure of the mapping of the different reference frames can be found in [63]. 

Figure 5.10 Relationships between the Different Coordinate Frames [63] 

 

In order to be able to drive the robot arm using the sensor information from the 

laser and the camera combination, the pose transformation of the robot arm with respect 
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From Figure 5.10 the following relationship for the homogeneous transformation 

can be extracted: 

cijcgcggij HHHH      (5.11) 

where, 

gijH : (4x4) homogenous transformation of the gripper or end-effector between views. 

cgH : (4x4) homogenous transformation of the gripper or end-effector with respect to 

the camera. 

cijH : (4x4) homogenous transformation of the camera between views. 

  

As stated previously, at this point the Tsai‟s approach is once again used to solve 

(5.11) and to determine the position of the camera with respect to the robot hand 

coordinate frame.  For a full description of the method refer to [62].  The result of the 

method will be the transformation matrix cgH . The homogeneous transformations gijH  

and cijH  are known from the robot forward kinematic equations and from the extrinsic 

parameters of the camera calibration procedure discussed earlier.  The transformation 

cgridH 2 which defines the calibration grid frame with respect to the camera frame can be 

found from the inverse of the extrinsic parameters of the camera (Rc, Tc), as follows: 
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where ijr  are the elements of the rotation matrix Rc and ),,( zyx ttt  are the components of 

the translation vector Tc.   

At a particular position and orientation of the robot manipulator the 

transformation gijH  is stored and the corresponding extrinsic parameters of the camera 

are retrieved given the image of the region of interest (ROI).  The camera transformation 

in the manipulator base reference frame 
ijbcH 2 is: 

cggijbc HHH
ij
2      (5.13) 

        The calibration grid transformation
ijbgridH 2 can also be obtained with respect to the 

robot base frame as: 

cijbcbgrid HHH
ijij 22       (5.14) 

 The fixed transformation between the end-effector and the robot-mounted camera 

can be verified using the following expression: 

 
ijbcgjcg HHH 2

1
       (5.15) 

 As an additional check to verify the solution, the result of (5.15) must reflect the 

fact that the homogeneous transformation of the camera with respect to the gripper or 

end-effector frame is constant for all calibration points given that the camera is attached 

to the end-effector of the robot arm.  Table 5.1 shows the rotation and translation 

components of the camera and the predicted manipulator‟s end-effector obtained from 

Eq. (5.11) using the Tsai‟s approach corresponding to ten (10) calibration points.  This 

table was generated using simulation software in MatLab and compared to the recorded 
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transformation matrices of the end-effector of the Puma robot arm from the forward 

kinematics. 

 

Table 5.1 Extrinsic Camera Parameters (  cR ,  cT ) and End-effector Rotation and 

Translation Matrices (  R ,  T ) 

Image Rotation  

Matrix 

 cR  

Image 

Translation 

 cT , mm 

End-effector Rotation  

Matrix 

 R  

End-effector 

Translation 

 T , mm 

0.1179 0.9928 -0.0232 -126.5395 -0.6862 0.6945 0.2163 92.8000 

0.9902 -0.1158 0.0779 -66.5448 0.7274 0.6530 0.2110 635.6000 

0.0747 -0.0322 -0.9967 235.2563 0.0053 0.3021 -0.9533 -326.6000 

0.0124 0.9996 -0.0263 -143.9736 -0.6221 0.7609 0.1843 115.9000 

0.9937 -0.0094 0.1119 -76.1713 0.7794 0.5796 0.2378 625.8000 

0.1116 -0.0275 -0.9934 224.2457 0.0741 0.2916 -0.9537 -338.0000 

-0.0849 0.9957 -0.0378 -135.1690 -0.5437 0.8188 0.1844 115.8000 

0.9900 0.0886 0.1100 -83.2790 0.8327 0.4990 0.2399 626.7000 

0.1129 -0.0281 -0.9932 225.3835 0.1045 0.2840 -0.9531 -336.4000 

-0.1185 0.9921 -0.0422 -131.9680 -0.5163 0.8363 0.1843 115.8000 

0.9864 0.1225 0.1093 -85.4977 0.8487 0.4709 0.2407 627.0000 

0.1136 -0.0287 -0.9931 225.6934 0.1145 0.2807 -0.9529 -335.9000 

-0.0856 0.9959 -0.0293 -138.7425 -0.5461 0.8153 0.1925 115.8000 

0.9896 0.0884 0.1138 -85.7883 0.8307 0.4976 0.2496 627.6000 

0.1159 -0.0193 -0.9931 225.9435 0.1076 0.2962 -0.9490 -334.5000 

-0.1478 0.9874 -0.0567 -124.5867 -0.4882 0.8550 0.1749 115.7000 

0.9824 0.1532 0.1067 -88.7926 0.8637 0.4447 0.2372 628.1000 

0.1140 -0.0400 -0.9927 227.9899 0.1250 0.2669 -0.9556 -333.7000 

-0.1117 0.9921 -0.0570 -102.6291 -0.5192 0.8382 0.1666 93.5000 

0.9870 0.1174 0.1099 -88.6900 0.8454 0.4752 0.2439 632.0000 

0.1157 -0.0440 -0.9923 227.1811 0.1253 0.2675 -0.9554 -333.3000 

-0.1417 0.9874 -0.0699 -94.6773 -0.4910 0.8568 0.1574 92.6000 

0.9830 0.1487 0.1076 -88.9109 0.8609 0.4497 0.2378 632.2000 

0.1167 -0.0535 -0.9917 227.5109 0.1329 0.2523 -0.9585 -333.1000 

-0.1053 0.9923 -0.0655 -98.0316 -0.5214 0.8387 0.1574 92.6000 

0.9874 0.1121 0.1119 -90.0564 0.8440 0.4796 0.2400 633.0000 

0.1183 -0.0529 -0.9916 228.2876 0.1258 0.2580 -0.9579 -331.7000 

-0.1066 0.9920 -0.0676 -96.7395 -0.5256 0.8398 0.1359 92.6000 

0.9832 0.1153 0.1414 -102.9621 0.8354 0.4793 0.2691 633.2000 

0.1480 -0.0514 -0.9876 225.5877 0.1609 0.2550 -0.9535 -331.3000 

  

Once the end-effector transformation is determined based on the sensors data, the 

connecting line between the end-effector of the robot arm and the position and orientation 
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of the centroid feature of the object with respect to the manipulator‟s base is defined as 

the desired straight line trajectory.  

As explained in Chapter 4, the z-component of the “LoS” is found using the 

orthonormal constraint via the cross product: 

     
     312332223121

311332123111

rYrrYrrYr

rXrrXrrXr

zyx

imimim

imimim







   (5.16) 

 Eq. (5.16) needs to be transformed to coincide with the origin of the end-effector 

reference frame for grasping.  The necessary transformation correspond to a translation to 

specify the line of sight relative to the end-effector frame (the z-axis of the camera is 

parallel to the z-axis of the end-effector).  The method to calculate the assist function 

based on the “LoS” of the camera is discussed in detail in Chapter 6. 

 

 

5.7    Summary 

  

 This chapter describes the procedure for using the camera and laser information to 

compute the centroid location as well as the position and orientation of an object of 

interest in a 3D space.  The principal utility of the sensory information (camera and laser 

range finder) at this level is to provide an automated system for measuring and digitally 

processing the content of the images of an object of interest.  This information is then 

used for calculating the line of sight (LoS) defined between the end-effector position and 

the object.  Then, the LoS defines a linear trajectory for guiding the user's motion towards 

the object of interest. The Levenberg-Marquardt (LM) nonlinear optimization method is 
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described for the camera and the laser range finder calibration. The LM is also used for 

solving the inverse perspective mapping (IPM) to transform from measured points in the 

image's plane to the base reference frame of the manipulator. 
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Chapter 6 

 

Sensor-Based Assistance Function Calculations 

 

6.1  Introduction 

 

 The architecture proposed in this work incorporates assistance to the user's motion 

using simple sensors (a camera and a laser range finder).  The visual information is 

combined with the human inputs and the deviations are corrected by the calculation of 

assistive or resistive forces.  The line of sight vector defined between the manipulator‟s 

end-effector and the object of interest is used as a constraining line.  Once the object is in 

the view of the eye-in-hand camera, the vision system is activated and all the required 

transformations are determined as explained in Chapter 5.   

 In the image pre-processing part, the case in which all objects are on the top of a 

table is considered.  In this situation, the control input is the position and orientation 

commands calculated from the visual input as well as the commands of the haptic input 

device.  This chapter describes the determination of the forces required to provide the 

appropriate feedback to guide the user's motion, which are identified here as the sensor-

based assistance functions. 

 

6.2 Generic Scheme for Motion-Dependent Force Feedback Calculation 

 The feedback force, F, is computed to maintain the haptic tip constrained to the 

user's intended path (see Figure 6.1).  This force feedback is generated according the 

following control law: 
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pKpKF  21      (6.1) 

where, 

F  = force feedback through the haptic interface 

1K  = proportional gain 

2K = derivative gain 

p = difference between the haptic tip position and target‟s centroid 

p = rate of change of p  

 

Figure 6.1 Translational Distance, dij, Used for Feedback Force Control Law 

 

From equation 6.1, the translational spring-damper virtual model is used for the 

force computation where dij represents a displacement vector connecting points Pi and Pj.  

Pi corresponds to the tip of the haptic stylus, and Pj correspond to a contact node on a 

path or contact point on an object of interest.  As previously explained, the object‟s 

centroid as well as the line of sight are used as geometric features to have a visual 
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indication of the user‟s intended path.  The displacement vector from Pi to Pj is obtained 

as: 

iiijjjij sTrsTrd      (6.2) 

where iT  and jT  are homogenous transformation matrices expressed with respect to the 

world coordinate system, {W}.   

 

The corresponding length of the spring-damper,  , is now defined as: 

ij

T

ij dd2      (6.3) 

The damping force component is a function of the displacement rate which is obtained by 

differentiating Eq. (6.3) with respect to time: 

ij

T

ij dd  22       (6.4) 

After substitution and simplification, Eq. (6.4) yields: 

 iiijjj

T

ij
sTrsTr

d



 










     (6.5) 

It can be shown that the time derivatives of the transformation matrices can be expressed 

in terms of angular velocities, i  and j (see Appendix E for details) as: 

 
iiiijjjj

T

ij
sTrsTr

d
 










 


      (6.6) 

Finally, the magnitude of the force applied to the user's hand through the haptic device is 

found to be: 

 201 )( KKF      (6.7) 



www.manaraa.com

 

 99 

Comparing Eq. (6.1) and Eq. (6.7), it is observed that p = )( 0   and p = ; 

i.e., the shortest distance between the haptic tip position and any point on the connecting 

line, as shown in Figure 6.1, is taken to be equivalent to the change in length of a virtual 

spring.  Similarly, the rate of change p  is equivalent to the rate of change of the virtual 

spring length.   

As it is obvious from this derivation, the torsional components were not taken into 

consideration in the calculation.  The Phantom Omni device used in this research does 

not have built-in actuators such that it can exert torsional forces with the thimble.  In the 

case of a device with such capabilities, the generalized forces can be calculated using the 

principle of virtual work where the virtual displacements can be obtained from the 

differential equation expressed in Eq. (6.7) and virtual rotations components can be 

obtained in terms of the Euler angles orientation coordinates [68, 69].  The next section 

discusses additional forces and effects used to constrain or guide the user‟s motion.  

These forces are sent to the haptic device in real-time. 

 

6.3 Sensor-Based Assistance 

 The sensors (camera and laser range finder) information needs to be mapped to 

the Cartesian space of the manipulator in order to generate an attractive or repulsive force 

to guide the user until the object of interest is between the gripper fingers in real time.  

As stated before, the line of sight (LoS) is considered to be the intended or desired 

user‟s motion.  A constraint frame for the end-effector of the manipulator is defined 

along the LoS of the camera considering the z-axis pointing in the direction of the camera 

axis, the x-axis along the line defined between the initial position of the haptic tip 
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 tiptiptip zyx ,,  and the projection defined by  zyxP ,,  as shown in Figure 4.3.  There will 

be measurement errors between the line of sight and the user‟s input possibly due to the 

reduced physical performance due to fatigue of the person interacting with the system or 

tremor illness.  These error signals are used to compute force constraint‟s to guide the 

user towards the destination.  As mentioned, the force constraints are defined by two 

different models: a) an attractive or repulsive force to guide the user towards the 

trajectory, and b) an assistive force to guide the user along the trajectory path.  In the case 

of approaching the surface of a table, the contact force can be computed as a function of 

the remaining distance to the surface. 

 The Cartesian motion between the initial position of the manipulator and the goal 

position is described in terms of robot arm transformations with respect to the base frame 

of the manipulator.  One way to accomplish this is to define a translation along a straight 

line and a rotation about a fixed axis  Tzyx kkk ,,  by an equivalent angle  [51, 60] 

(See Appendix B).  As shown in Figure 4.3, the two constraint points are defined by the 

coordinates  111 ,, zyx  and  
ggg zyx ,, , respectively.  The equation of the 3D line is given 

by: 
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The projection of the initial position of the end-effector is: 

11

11

11

)(

)(

)(

zzzkz

yyyky

xxxkx

g

g

g







     (6.9) 
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The distance between the projected point  zyxP ,, and the initial point is given by 

2

1

2

1

2

1 )()()( zzyyxxd     (6.10) 

Substituting (4.9) into (4.10) yields: 

])()()[( 2

1

2

1

2

1

2 zzyyxxkd ggg    (6.11) 

 If D is defined as the distance measured using the laser range finder, and it is 

expressed in terms of the initial and goal Cartesian coordinates, then 

2

1

2

1

2

1 )()()( zzyyxxD ggg  .  The following computation is performed: 

D

d
kDkd       (6.12) 

 The projection of the haptic tip‟s initial position  zyxP ,,  can be obtained by 

substituting (6.11) into (6.9).  The constraint frame for the end-effector of the 

manipulator can now be obtained by defining the axes as shown in Figure 4.3 where the 

z-axis points in the direction of the constraint line, the x-axis along the line defined 

between the initial position of the haptic tip  tiptiptip zyx ,,  and the projection defined 

by  zyxP ,, .  The direction of the y-axis can be found using the right-hand rule and 

orthogonality condition ZXY


 .  After normalization, the transformation matrix R in 

terms of the directional cosines  pon


can be found as: 
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 As previously stated, the equivalent single axis-angle method is used to represent 

a rotation about a single axis ̂ to align the end-effector frame to the desired goal 

configuration.  This is also the basis for planning the linear motion for autonomous 

execution at the user‟s command.  In this case, the linear trajectory is divided into N 

smaller segments, where N depends on the distance of travel, nominal linear velocity of 

the end-effector and the update rate of the trajectory generation thread.  To accomplish 

this task, the inverse kinematic equations of the manipulator are solved at each 

intermediate position.  

 Two different approaches to solve the inverse kinematic equations are 

implemented in this work.  One approach considers the closed-form solution to obtain the 

required joint variables to drive the robot arm to the next segment along the linear 

trajectory.  This solution is appropriate when the robot arm is kinematically non-

redundant.  The second approach is to obtain the joint rates using the inverse Jacobian, 

followed by integration to obtain a set of joint angles by the application of Whitney‟s 

resolved-rate algorithm.  This allows added flexibility for dealing with kinematically 

redundant robots.  As stated before, the benefit of switching control between the human 
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user and the automatic control is to reduce the burden of executing repeated tasks and to 

provide an appropriate level of assistance to the user by scaling the motion.   

 As an example of constrained motion, the haptic end-effector linear velocity can 

be assigned to the robot end-effector velocity as haptic

T

robot VRV


 .  This velocity can be 

scaled using a scaling factor in the constrained direction as follows: 
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v

v

robot VRK

K

V




















100

00

00

     (6.14) 

 Notice that the Z-axis component is not affected by the scale factor because the 

constrained frame is defined along the desired path.  However, the X and Y directions are 

scaled by the scaling factor 10  vK .  The resulting velocity components are then used 

as the input to the resolved-rate algorithm as shown in the simplified version of the 

Whitney‟s algorithm in Figure 3.7, which shows an expanded version as implemented in 

the real-time telerobotic controller.  

 The current position in the base frame of the haptic device is obtained, the vector 

tip

initr


 defined from the starting point to the haptic device position is calculated as 

 111 ,, zzyyxxr tiptiptiptip

init 


    (6.15) 

Similarly, the vector between the starting and goal (destination) points is obtained as: 

 111 ,, zzyyxxr goalgoalgoalgoal

init 


   (6.16) 

Finally, the projection of the haptic position on the desired path is obtained through the 

use of the dot product as: 
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    
goal

init

goal

init

goal

init

tip

init

projected r
r

rr
r





 

      (6.17) 

 In Eq. (6.17), the vector goal

initr


 is equivalent to obj

initr


 defined by: 

 111 ,, zzyyxxr wwwobj

init 


    (6.18) 

where the Cartesian coordinates of the object  www zyx ,,  are represented in the world 

space following the procedure explained in Chapter 5. 

The trajectory path or control surface is surrounded by an attractive potential field 

the amplitude of which increases with the distance between the end-effector and the 

projected point.  The assistance force vector is calculated as: 

 projectedtip

init

haptic rrKF


     (6.19) 

 For a motion task along the X-axis, a general scheme is to constrain the Y and Z 

axis directions.  If the assisted motion is along the Y axis, then the X and Z directions are 

constrained.  Table 6.1 shows the different cases for constrained directions in a motion 

task. 

Table 6.1 Constrained Directions in a Motion Task 

 

X-dir Free Y-dir Free Z-dir Free 

 
 














Zhaptic

Yhaptic

X

FfZ

FfY

hapticPosX

 

 

 













Zhaptic

Y

Xhaptic

FfZ

hapticPosY

FfX

 

 
 















Z

Yhaptic

Xhaptic

hapticPosZ

FfY

FfX
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where,  ZYX hapticPoshapticPoshapticPos ,,  corresponds to the current user‟s position 

in Cartesian space and  
XhapticFf ,  

YhapticFf ,  
ZhapticFf  are the new position after the 

constraint force is applied. 

 Equation (6.19) includes only the spring-type force feedback.  Considering the 

force feedback control law represented by Eq. (6.7), it can be observed that this control 

law not only compensates for the difference (error signals) between the computer-

generated desired path and the deviation from this path caused by the user input, but it 

can also includes a dampening effect.  This effect is directly proportional to the velocity 

component in the opposite direction of the motion.  The combined spring-type and 

damping-type feedback forces help the user to stay in the straight trajectory. 

 Once the user is moving along the path, additional assistance is provided in the 

direction along the linear trajectory as illustrated in Figure 6.2.  The linear velocity 

components are scaled up or down depending upon the user's motion along the trajectory.  

In the illustration,  scaledV


corresponds to the scaled velocity vector, user V


is the current 

user‟s motion velocity vector, and  projV


is the projection of the user‟s velocity vector in 

the direction of the desired resultant velocity. 

   

Figure 6.2 Desired Path and "Noisy" Trajectory Input 

 scaledV


 

user V


 

 projV

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 The Phantom Omni has built-in force feedback capabilities, and an attractive or 

repulsive force can be rendered through the haptic device interface to constrain the user‟s 

motion using the control law defined by Eq. 6.5.  The level of assistance can be modified 

as the user‟s skills in executing a particular task increase by modifying the scaling factor 

K (gain) in the haptic control strategy. 

 

6.4 Comments 

 The Cartesian trajectory generated by positioning and orienting the end-effector 

toward the object (destination point) is monitored by a separate computational thread.  By 

separating the data acquisition processing and communication process, a highly 

responsive interaction was attained.  Even though the manipulation of objects can be 

driven through the sense of touch and the optical sensory information while the human is 

in the loop, the multithreaded implementation at the sensory suite level allows for the 

possibility to switch supervisory control of the robotic arm to an autonomous mode at the 

user's command with ease.  This transition between a supervisory control mode to an 

autonomous control mode reduces the burden on the user and reduces the possibility of 

fatigue during long time interactions with the system. 

 

6.5 Summary 

 In this chapter, the concept of sensor-based assistance is defined.  The assistance 

function calculations are described as well as the force feedback required to provide the 

appropriate sensor assisted function to guide the user's motion.  The line of sight concept 

is considered as a visual indication of the intended linear trajectory of the user.  The 
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assistance function was generated to constraint the user‟s motion based on the measured 

differences between the LoS, determined through the use of the sensor data fusion, and 

the current position of the user, provided by the haptic‟s tip. 
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Chapter 7 

 

Experimental Methodology and Testbed for Interactive Simulation 

7.1 Introduction 

 The implementation of a PC-based multithreaded architecture made possible the 

design and realization of a real-time robotic system with the capabilities to provide 

sensor-based assistance and haptic manipulation of real and virtual objects.  In this 

chapter, the experiments conducted to validate the control strategies with the actual 

hardware are described.  The testing of the system was conducted on healthy people 

performing a “pick-and-place” task, which is a common activity of daily living (ADL) 

task. Three people were trained to use the Phantom Omni interface and to teleoperate the 

PUMA manipulator in all control modes to familiarize themselves with the system.   

This Chapter presents the methodology used for the experiments with the actual 

hardware:  a 6-DoF Puma 560 manipulator, a Phantom Omni haptic interface and the 

sensory suite consisting of a CCD camera, a Sick DT60 laser range finder and the PUMA 

encoders.  The performance measures are defined by the "Absolute Position Error" 

(APE), the "Absolute Orientation Error" (AOE) indicators, and the task-completion time 

which are calculated using the recorded data sets for each experiment.  The following list 

shows the different comparisons made using the APE and the AOE indicators for position 

and velocity based control modes: 
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1. Autonomous Control Mode 

2. Position-Based Regular Teleoperation 

3. Position-Based Virtual Fixture Teleoperation 

4. Position-Based Scaled Teleoperation 

5. Velocity-Based Regular Teleoperation 

6. Velocity–Based Virtual Fixture Teleoperation 

7. Velocity-Based Scaled Teleoperation 

8. Force-Based Virtual Fixture Teleoperation 

 

Chapter 9 discusses and analyses the experimental data gathered for validating the 

trajectory tracking and assistive capabilities of the system for guiding the user's motion 

during execution and successful completion of the task. 

 

7.2 Methodology for Experiments 

 As previously stated, the testing of the system was conducted on three healthy 

people performing a “pick-up-a-cup” task. After training the subjects to use the Phantom 

Omni interface, they moved the PUMA manipulator in all control modes.  The test setup 

included a platform in front of the arm, with two markers indicating the pick-up position 

and the drop-off (destination) position. These two positions were offset from each other 

in all the three Cartesian directions as shown in Figure 7.1. A coffee cup was used as the 

intended target to be grasped and moved from the start to the end positions.  The start 

position for all the experiments is kept constant and it is defined as the start position. 
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For each test, the position and velocity based teleoperation modes were compared 

to regular, scaled and virtual fixture based teleoperation modes in the following way: 

1. Position-Based Regular teleoperation vs. Scaled teleoperation 

2. Position-Based Regular teleoperation vs. Virtual Fixture 

3. Position-Based Regular teleoperation vs. Autonomous 

4. Velocity-Based Regular teleoperation vs. Scaled teleoperation 

5. Velocity-Based Regular teleoperation vs. Virtual Fixture 

6. Velocity-Based Regular teleoperation vs. Autonomous 

7. Position-Based Regular teleoperation vs. Force-Based 

 

 

Figure 7.1 „Pick-up-a-cup‟ Task Experimental Setup 
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When the user starts the operation under the supervision and observation of the 

attendant, the robot is commanded to go from the “parked” position to the “ready” 

position by the attendant. The user starts to control the arm from the “ready” position. 

The user always starts with the position-based teleoperation mode and then switches the 

test mode. While performing an ADL task the user can switch to any mode, however, for 

the purposes of testing the user toggles between the position-based teleoperation and the 

tested mode. The user has to toggle to position based teleoperation every time to orient 

the hand so that it is able to point to target objects, grasp the cup and drop the cup at the 

destination point as these steps require re-orientation of the end-effector. For automatic, 

scaled and virtual fixture based teleoperation modes, once the object is located by 

teleoperation, the user pushes the Phantom Omni stylus button to lock the target and 

generate the desired trajectory. Once the user reaches the target vicinity, the user 

teleoperates the arm to adjust the gripper and grasp the object. The user then points to the 

destination marker and pushes the Omni stylus button again to lock the destination 

coordinates and move in the same fashion to the drop-off point and release the object.  

In the Scaled Teleoperation mode, the user input was scaled 3X when it was along 

the trajectory generated by the laser, and 0.2X when it was perpendicular to the 

trajectory.   In the case of virtual fixtures, all positions and orientations coming from the 

user input were locked (scaled down to 0X) except the position parallel to the trajectory, 

which was scaled to 3X. Each control mode was tested five times, and the elapsed-time to 

complete the task was recorded. The trajectory generator thread generates a log file 

recording the transformation matrices of the tip, the elapsed time and the gripper status at 

every loop. Data from this file were conditioned, and used for data analysis.  
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7.3 Visual and Haptic Testbed to Control a 6-DoF Robot Arm  

 In the experiments the Phantom Omni Haptic interface from SensAble 

Technologies is used as the master.  It is run on a Pentium computer, with 1GHz single 

processing unit.  The Phantom Omni device uses the OpenHaptics software which runs 

on Windows XP OS.  A Microsoft Visual Studio C++ program was developed to run the 

Phantom Omni controller and render the virtual environment using OpenHaptics [70] and 

OpenGL library functions as well as APIs. The commands for creating and interfacing 

the PUMA software controller and the Phantom Omni controller were also embedded in 

the same program. The protocol for sending and receiving information between the Omni 

and the PUMA controller is based on User Datagram Protocol (UDP) sockets.  The UDP 

socket programming class implemented is a derived class from the Microsoft socket 

programming library.   

The program running on the Omni controller is multithreaded. These threads 

include the main application thread, the graphics thread, the haptics thread, the collision 

detection thread (this thread runs on the background and it is responsible for collision 

among objects on the virtual environment and no real objects) and the communications 

thread for receiving data from PUMA controller. The main application thread starts the 

other threads, initializes the Phantom Omni, creates sockets for communication and 

integrates the whole application. The graphics thread renders the graphics scene at 

approximately 30 Hz refresh rate. This graphics scene is a virtual environment that helps 

the user to engage and disengage the PUMA in teleoperation (Figure 7.2). The haptics 

thread provides the haptics feedback to the user at a refresh rate of 1000 Hz and the 

collision detection thread does the computations for haptics force rendering.  
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Figure 7.2 Virtual Environment for Teleoperation of the PUMA Manipulator 

 

The teleoperated robot consists of a 6-DoF Puma 560 manipulator.  As explained 

in Chapter 3, the Puma software controller is a form of a PD plus gravitational 

compensation strategy controller. The robot arm is equipped with a modified QC MP 

Orbit camera (an off-the-shelf USB camera) and a Sick DT60 laser range finder (See 

Appendix G) as shown in Figure 7.3.  In its original format, the camera was not suitable 

to be mounted at the wrist of the robot arm and a new case was built to accommodate the 

integrated circuit, the lens and cables.  Also, the face detection and auto-zoom features of 

the MP Orbit model were turned off in order to implement the calibration procedure 

described in Chapter 5.  This software runs on a Dual-core computer with Windows XP 

OS.  The sensors (the camera and Sick DT60 laser range finder) and a 4-DoF Barrett 

Hand (Figure 7.3) were attached to the wrist of the Puma 560 manipulator.   
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Figure 7.3 Sensory Suite Devices 

  

Figure 7.4 shows the camera and the DT60 laser as they are mounted on the wrist 

of the Puma 560 robot arm in the experimental setup.  The Barrett hand is also shown. 

 

 
Figure 7.4 Camera and the Sick DT60 Laser Range Finder Mounted at the Puma's End-

Effector 
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As shown in Figure 7.5, when the user operates the robot arm and locates an 

object of interest, a stream of images of the object in the field of view is processed for 

geometrical information computations.   

 
 

Figure 7.5 Results of the Segmentation and Feature Extraction Processes 

 

 

The segmentation and the feature extraction processes that take place are also shown in 

Figure 7.5.  As shown, the first window to the left presents the object as seen from the 

camera.  The crosshair lines, overlaid in the centered image, are used to emphasize the 

centroid of the object of interest with respect to the screen coordinate system located at 

the top-left corner of the viewport.  The black and white image to the right is the image 

resulted after applying the edge detection algorithm.  As mentioned, the system includes 

two algorithms for edge detection for added flexibility:  Sobel and Canny.  However, 

only one of these edge detection algorithms must be active when the experiments are 
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performed.  The Canny edge detector is used in the presented computations because of its 

capabilities to smooth the image and to filter noise in the original image. 

 

7.4 Haptic Interface and Cartesian Motion 

 During teleoperation of the robot arm through the haptic interface, the real-time 

controller receives the latest position and velocity updates from a virtual environment as 

shown in Figure 7.6.  

 

 
  

Figure 7.6 Virtual Environments and 3D Constraint Plane for Haptic Control 

 

 As explained before, the user engages the Puma using the toggle buttons 

available to the user.  The Phantom Omni control software uses the input from the two 

buttons located on the Phantom Omni stylus.  The “white button” is used for 

Constraint Plane 

Linear Trajectory 

Workspace 

Virtual Solid Cube 
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teleoperating the Puma manipulator and the “blue button” for indexing.  For instance, the 

user can use the “blue button” on the stylus to index the virtual cube as shown in Figure 

7.6.  This way, the user can move the cube to the center of the screen when it is needed 

and re-engage the manipulator with more screen space available in the virtual 

environment.   

 

7.5 Performance Measures 

 The performance measures defined in this work are associated with the trajectory 

tracking when position-based or velocity-based control modes are active.  In this case, 

two performance indices were used to measure the error associated with the position and 

orientation in regular, scaled, and virtual fixture teleoperation.  The performance 

measures were defined by the "Absolute Position Error" (APE) and the "Absolute 

Orientation Error" (AOE) indicators.  The following list shows the different comparisons 

made between the different APE and the AOE indicators for position and velocity based 

control modes: 

1. Autonomous, Force-based, and Motion-based Virtual Fixture 

Teleoperation 

2. Force-based Virtual Fixture, Regular, Scaled, and Virtual Fixture 

Teleoperation 

3. Autonomous, Velocity-Based Scaling, Velocity-Based Virtual Fixture, 

and Force-based Virtual Fixture 

4. Position-Based Regular teleoperation vs. Scaled teleoperation 

5. Position-Based Regular teleoperation vs. Virtual Fixture 

6. Position-Based Regular teleoperation vs. Autonomous 
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7. Velocity-Based Regular teleoperation vs. Scaled teleoperation 

8. Velocity -Based Regular teleoperation vs. Virtual Fixture 

9. Velocity -Based Regular teleoperation vs. Autonomous 

 

Each task was repeated five times for each mode of operation and the calculations 

for the associated indicators of the Absolute Position Error as well as the Absolute 

Rotation Error were based on the following definitions. 

 

7.5.1 The Absolute Position Error (APE)  

 This performance measure defines the error between the commanded linear 

position components ( c

i

c

i

c

i zyx ,, ) and the actual position achieved by the software 

controller ( fff zyx ,, ).  In other words, the APE is the Cartesian distance between the 

desired and the actual end-effector position [70].  This measure is obtained by the 

evaluation of Eq. 7.1 as follows: 

     222 fc

i

fc

i

fc

ipos zzyyxxAPEerror    (7.1) 

where ( c

ix , c

iy , c

iz ) are the current 3D coordinates of the robot‟s end-effector in the base 

frame of the manipulator and ( fx , fy ,
fz ) are the achieved 3D coordinates of the drop-

off point (destination), also with respect to the base frame.  Figure 7.7 shows the absolute 

position error when the robot arm is commanded in simulation to follow a straight line 

trajectory between the goal position and a target situated 15.0 cm away from the initial 

position of the end-effector. 



www.manaraa.com

 

 119 

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Position Error

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E

 

Figure 7.7 Absolute Position Error (APE) 

 

7.5.2 The Absolute Orientation Error (AOE)  

 This performance measure defines the error related to the rotation matrix 

elements  
ijr  as described in Chapter 3.  It specifies an equivalent single axis rotation 

angle about a vector defined between the desired and the current rotation of the end-

effector of the robot arm [70].  Equation 7.2 defines the rotation error: 

 


























 
 

2

1
cos 1

T

cf

ori

RRtrace
absAOEerror    (7.2) 

where  
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fR  = (3x3) achieved rotation matrix at the destination (defined as the DROP-OFF 

POINT) and  

cR  = (3x3) current rotation matrix evaluated at each time interval.   

 

The trace function in Eq. (7.2) corresponds to the sum of the diagonal elements of 

the product of the achieved fR and current rotation cR matrices, which is also the sum of 

the eigenvalues of the product T

af RR . The angle expressed by 
 













 

2

1T

cf RRtrace
specifies 

an equivalent single angle rotation about a vector defined between the final and the 

current orientation of the end-effector of the  manipulator.   

Figure 7.8 shows the results of the evaluation of Eq. 7.2 in an offline program in 

MatLab.  As before, absolute orientation error is calculated for the straight line trajectory 

defined between the goal position and a target situated 15.0 cm away from the initial 

position of the end-effector.  As can be observed, the maximum orientation error obtained 

is about 0.000001 radians.  Given that the initial orientation was zero, it should be 

expected that the orientation error to also be zero.  However, accumulated errors in the 

computation prevent this from happening in the simulation. 
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Figure 7.8 Absolute Orientation Error (AOE) 

 

The following steps describe the process after recording every user interaction in 

autonomous and teleoperation control modes: 

1. During regular teleoperation, the system does not use the external sensory input 

for assisting the user's motion.  For automatic, scaled and virtual fixture 

teleoperation modes, once the object is located by using teleoperation mode, the 

user pushes the Omni stylus button to lock the target and generate the desired 

trajectory based on the sensory input.  The user then teleoperates the robot arm 

using autonomous, scaled, or virtual fixture mode until the gripper reaches the 

target vicinity.  Once the gripper reaches the target vicinity, the user teleoperates 

the arm to adjust the gripper and grasp the object. Then, the user uses regular 
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teleoperation and points to the destination marker and pushes the Omni stylus 

button again to lock the destination coordinates and move in the same fashion to 

the drop-off point and release the object.  In the case of force-based virtual fixture 

a “stick force” effect keeps the user on the straight line trajectory generated using 

the laser input. 

2. The position (X, Y, Z) and the orientation angles   ,,  of the end-effector of 

the Puma manipulator, as well as, the real-time timing are recorded in text files by 

the real-time application for all the experiments: autonomous, position-based, and 

velocity-based (regular, scaled and virtual fixture) teleoperation.  The initial 

(START POINT), the pick-up point (PICKUP POINT) and the drop off (DROP 

POINT) are also recorded in the text file. 

3. The recorded data   ,,,,, ZYX  are then transferred to the visualization 

application in MatLab for plotting and further analysis.  The transferring of the 

angles is more efficient than transferring the assembled (3x3) rotation matrix as 

registered by the real-time software. 

4. For every recorded configuration, a 3D plot showing the 3D Cartesian position 

(X, Y, Z) is obtained.  It is important to mention that, even if the autonomous 

mode is being tested, there is a small part of the trajectory for which the user 

needs to switch back to regular teleoperation in order to re-orient and to avoid an 

obstacle intentionally placed between the pick-up and drop points.  Once the 

obstacle is avoided, the user can switch back to autonomous, or any of the tested 

modes.  For instance, Figure 9.3 presents the case where the user switched back to 

autonomous mode for the last portion of the path to the drop-off point. 
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5. The (X, Y, Z) coordinates of the end-effector from the START POINT to DROP 

POINT are used to calculate the "Absolute Position Error", APE, as given by Eq. 

(7.1).  The result from Eq. (7.1) will then correspond to the traveled distance from 

start to destination.  This value can be used as an indicator to measure which 

teleoperation mode can achieve the destination by traveling the lesser distance as 

a function of time. For instance, this measure is used to compare the regular 

teleoperation mode, which provides no assistance, to the autonomous, scaled, 

force-based and motion-based virtual fixture teleoperation modes.   

6. The calculation of the "Absolute Orientation Error" (AOE) is more involved.  

First, the Euler's angles   ,,  are used in the offline program to compute the 

rotation matrix (the details are shown in Appendix E).  Eq. (7.2) is then evaluated 

at every sampled point recorded in the text file. 

7. The APE and AOE measures of the tested control modes described in section 7.2 

are plotted versus time and comparisons are made to determine the effectiveness 

of the assistance provided to guide the user‟s motion to accomplish the task. 

 

For both performance indicators the area under the curve represents a 

measurement of the distance traveled (START POINT to the DROP POINT) and the time 

to complete the pick-up-a-cup task.  By comparing the area covered autonomous control 

mode, force and motion-based virtual fixtures, and scaled teleoperation experiments it is 

possible to determine the effectiveness of each form of control for completing the pick-

up-a-cup task and others ADL tasks.  This area can be determined by numerically 

integration of the APE curve using a fixed increment of time t as registered by the real-
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time system.  The smaller the area, the better the effectiveness of the method for 

accomplishing the pick-up-a-cup task. 

 

7.6 Summary 

 In this chapter, the methodology followed to conduct the experiments as well as 

the experimental testbed was described.  The performance measures were also defined.  

A pick-up-a-cup task, a common activity of daily living (ADL), is used as the testing 

task.  Eight testing scenarios were defined for position-based and velocity-based control 

modes for later analysis.  The performance corresponding to autonomous control, regular, 

scaled, force-based and motion-based virtual fixture teleoperation modes is defined in 

terms of the “Absolute Position Error” (APE) and the “Absolute Orientation Error” 

(AOE).  The area under APE curve can be used as a qualitative indicator for comparing 

each of the operation modes.  Results including these comparisons are presented later in 

Chapter 9. 
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Chapter 8 

 

Virtual Reality Simulation Testing 

 

8.1 Introduction 

 

 In robotics, once the governing equations of robot arm motion are defined in 

terms of the virtual object variables, a computer-generated version of the real robot arm 

can be used for testing the control strategies without the dangers of damaging the 

hardware.  Virtual Reality, VR, provides a widely accepted computer interface that 

enables realistic simulations of physical systems.   

In the case of a robot arm, both the forward and inverse kinematics solutions can 

be defined in terms of the joint angles of the virtual reality standard transformations 

defined by the scripting language known as Virtual Reality Markup Language (VRML). 

In practice, the appropriate mapping of the Cartesian axes between the reference frames 

defined for the robot arm and the haptic device can be easily visualized in the virtual 

environment by moving the haptic stylus or through a graphical user interface.  This way, 

the inherent complexity of the design and testing of a real-time controller with a haptic 

interface directly on the physical system can be reduced by performing probe of concepts 

of many of the programming tasks with realistic and believable visualizations and 

simulations.  In this chapter, the haptic control of the Puma 560 model using the VR 

techniques is presented as well as the communication protocol developed in order to 

resolve the high timing demands of the haptic loop and the integration of the different 

programming workspaces. 
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8.2 Virtual Reality Simulation of the Puma 560 Manipulator 

 Virtual Reality simulation of the robot arm enables the design and testing of 

sophisticated control strategies in a "proof of concept" sense without the dangers of 

damaging the real robot arm.  As discussed in Chapter 4, the teleoperation tasks are 

executed through the use of the Phantom Omni for force feedback and the Puma 560 

robot arm interface which has a very different kinematics compared to the Omni. The 

resulting transformations from the evaluation of their respective kinematics equations 

need to be mapped (in joint space or Cartesian space).  For simulation of the VR robot 

arm motion, both the forward and inverse kinematics solutions can be defined in terms of 

the joint angles of the virtual reality transformations (known as a "Transform" object in 

the VRML script language).  The appropriate mapping of the Cartesian axes between the 

reference frames defined for the robot arm and the haptic device can be easily visualized 

in the virtual environment. 

In this work, the visualizations of the motion of the Puma 560 (with and without 

haptic control) were realized using VR toolbox as shown in Figure 8.1.  The VR toolbox 

is an add-in library used for the creation and visualization of virtual models within the 

MatLab/Simulink workspace.   This toolbox allows complete control of the scripting files 

associated to the different parts of the robot construction (links, joints, base stand, and 

end-effector).  The VR toolbox follows the VRML97 standard which means that 3D 

CAD modeling software such as SolidWorks can be used to create the solid models.  The 

CAD model (parts and assembling) can then be ported to the VRML97 format following 

a straightforward procedure.   
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Figure 8.1 Virtual Reality Model of the Puma 560 Robot Arm 

8.3 Control of the VR Model of the Puma 560 Manipulator 

 The VR model of the Puma 560 can be driven in two different ways.  One way is 

using a simple graphical user interface (GUI) as shown in Figure 8.2.  This option 

enables the user to perform the virtual simulations of the robot arm using purely robotic 

mode (without the haptic interface).  The GUI was developed as a control panel with 

toggle buttons and scroll bars for this form of operation. As shown, the graphical user 

interface (GUI) presents toggle buttons for the selection of the type of control, either joint 

or Cartesian space.  This GUI provides an intuitive interface to the user and the toggle 
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bottom action prevents from trying to activate the two types of available control modes 

simultaneously. 

 

Figure 8.2 Control Panel for Joint and Cartesian Space VR Simulations 

  

If the "Joint Control" toggle bottom is activated on the control panel, the scroll 

bars can be used to change each individual joint angle value in increments of 1 deg.  The 

minimum value of the scroll bar is zero and the maximum value corresponds to the joint 

limit as defined in the real robot arm configuration files.  In this case, the homogenous 

transformation matrices are evaluated (See Appendix A) and the results are assigned to 

the corresponding joint transformation matrix in the VRML script file.   On the other 

hand, if the "Cartesian Control" toggle bottom is activated, the user is able to move the 
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end-effector along the 3D axis directions (X,Y,Z) and the solution of the inverse 

kinematics problem is required.  In this case, two solutions were implemented. The first 

one is a "closed-form" solution available for the Puma560 and the resolved-rate algorithm 

based on the inverse Jacobian of the robot arm.  This solution is more convenient when a 

closed-form solution is not available, as it is the case for kinematically redundant-robot 

arms.  The details of this algorithm can be found in Chapter 3.  The second one is using 

the haptic device for teleoperation of the virtual model of the robot arm as shown in 

Figure 8.3.  In this case, the user is provided with a virtual environment where a solid 

object (red) is displayed and the user can "touch" with the Omni's stylus.  A separate 

window is then shown with the VR model of the Puma 560 tracking the "haptic tip" of 

the Phantom Omni device when the cube is "grasped" with the stylus. 

 

  

Figure 8.3  Haptic-VR Puma 560 Graphical User Interface 
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8.4 VR Linear Trajectory Simulation 

 A major benefit of the VR toolbox in MatLab, in addition to the visualization 

capabilities, is the availability of robust built-in numerical functions for linear algebra, 

inverse and pseudo-inverse algorithms, optimization and singular value decomposition, 

among others.  Taking advantage of these capabilities and, in preparation for the 

implementation of the real-time trajectory generation in QNX, a MatLab script program 

was developed in order to compare the results from the VR simulation and the actual 

physical implemented in C++ code.   

 The algorithm for the linear trajectory is based on the Equivalent Single Axis 

Rotation Method with provisions taken to avoid representational singularities (See 

Appendix B).  Once the linear trajectory is generated, the required torques to drive the 

arm to the final destination needs to be computed.  As discussed in Chapter 3, the 

implementation of the resolved-rate control technique involves the computation of the 

Jacobian and the inverse of the Jacobian of the robotic arm.   

In QNX, all required numerical solutions must be implemented in C++ and the 

results need to be validated.  The availability of the results from the simulation makes it 

easier to debug potential errors during the computation of the different numerical 

algorithms in C++ running under QNX O/S.   

 In MatLab, the script requires a homogenous transformation matrix defining the 

initial position and orientation of the end-effector and the final transformation matrix 

defining the desired (goal) destination as input arguments.  Both transformation matrices 

are described relative to the base reference frame of the manipulator.  Also, the script 

expects the desired linear speed of the end-effector as an input argument (0.2 m/s in this 
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simulation).  The following results were obtained by commanding the VR model of the 

Puma 560 to travel from its predefined ready (initial) position to the predefined 

destination.  The corresponding homogenous transformation matrices are: 
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
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1434.01843.07621.06206.0

0

goalT   (8.2) 

 

 The specified initial and goal transformations correspond to 15.0 cm displacement 

of the end effector from its initial position along its own z-axis.  Figure 8.4 shows the 

required joint angles of the manipulator and Figure 8.5 shows the commanded linear 

trajectory.  This is an important validation phase before using the Phantom Omni 

differential transformations are used to command motion actions to the Puma 

manipulator. 
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Figure 8.4 Required Joint Angles for the Predefined Linear Trajectory Path 
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Figure 8.5 End-Effector Displacements from Initial to Goal Position 
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8.5 Haptic Feedback and Assist Functions in Simulation 

 Figure 8.6 shows a simulation of a haptically rendered cube and Bezier-type curve 

trajectory where features of OpenGL, HLAPI and HDAPI libraries are combined for the 

simulation of a teleoperation task.  The solid cube was created using graphic functions 

available through the OpenGL graphic and HLAPI libraries.  On the other hand, the 

Bezier points were generated using the classical algorithm in C++, and then, displayed 

using OpenGL vertex structures.   

 

 

Figure 8.6 Bezier Curve Trajectory and Haptically Rendered Cube 

 

During the interaction, the user will approach the Bezier trajectory.  The 

assistance provided at this instant is a "stick" friction effect, running at the haptic servo 

loop update rates, which is activated when the user is at a close proximity (a distance 
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equivalent to the radius of the sphere representing the haptic tip in the virtual 

environment) to the trajectory and a spring-damper force activated once the user is 

following the path.  In other words, the haptic interface provides guidance by 

constraining the user‟s motion along the trajectory.  The resultant force is transmitted to 

the user's hands through the Phantom Omni using the method explained in Chapter 4.  In 

this simulation, the haptic device is used for sensing proximity and for actuation in the 

form of force feedback to the user's hand.  Typical "stick" friction forces are shown in 

Figure 8.7.  Both original and filtered data are shown. 
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Figure 8.7 Experimental Data of Forces Resulting from a Typical Interaction 
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8.6 Comments on the Haptic and VR Model Simulations 

 The integration of the VR toolbox with the different motion algorithms to drive 

the VR robot arm model in pure robotic mode occurs within the same MatLab 

workspace. Therefore, there is no communication issues involved.  However, when the 

haptic control is integrated with the virtual reality environment (solid cube created with 

OpenGL) and the VR toolbox in MatLab, a different approach is required in order to 

make the virtual simulations responsive and stable at both ends.   

 As discussed in Chapter 4, the Phantom Omni model uses the OpenHaptics 

libraries for the Windows OS.  To have access to those libraries, the C++ programming 

language is used.  The VR simulation running on the MatLab environment needs to be 

interfaced with the HDAPI/HLAPI libraries for haptically rendering the OpenGL virtual 

objects in C++.  A multithreaded application interface was developed to make the 

separate workspaces to communicate back and forth for data interchange.  This 

component of the application is based on UDP sockets running as separate thread and the 

technique is further explained next. 

 

8.7 Communication Protocol 

 As previously stated, the VR simulation and the haptic control software run in two 

different workspaces.  A network protocol based on User Datagram Packets (UDP) was 

developed in order to interface the MatLab workspace used for the VR simulations and 

the C++ programming language used for the haptic control. A single packet contains the 

joint angles and the Cartesian position of the Phantom Omni‟s end effector needed to be 
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transferred to the MatLab workspace. As stated in Chapter 3, the protocol design includes 

features to deal with the possibility of data loses or out of order sequences.  

For this particular implementation, a time-stamp variable was used to prevent 

these problems.  The interfacing of haptic control and the VR simulation software 

implements four (4) main threads in C++ running simultaneously with different update 

rates.  The different threads are:  

1. The graphics thread. 

2. The haptic loop thread. 

3. The collision-detection thread. 

4. The communication thread 

 Of these four threads, only the communication thread implementation is different 

from the physical simulation (as discussed in Chapter 3). This is due to the fact that 

MatLab does not provide functionalities for handling real-time clocks or synchronization 

mechanisms.  The solution was to use regular timers and standard UDP-based socket 

programming techniques in the MatLab programming environment. 

 

8.8 Comments on the Communication Protocol in the Simulation Program 

The communication thread provided a stable and acceptable response time for 

interfacing VR simulations with the Phantom Omni controller when used for short 

periods of time.  However, when the interface is used for extended time, the 

communication between the C++ application and the MatLab simulation is inconsistent 

and unreliable.  The dynamic data exchange API responsible for transferring the UDP 

packets between the MatLab workspace and the sockets program in C++ fails to meet the 
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high timing constraints of the Phantom Omni and, at the same time, to update the virtual 

environment during the simulation.  However, the interfacing between the VR simulation 

in MatLab and the OpenHaptics libraries in C++ creates a realistic look and appearance 

of the robot arm as well as a friendlier graphical user interface (GUI) for testing and 

debugging. 

 

8.9 Summary 

 The use of the VR simulation provides a flexible visualization tool for testing the 

purely robotic control mode as well as the haptically driven manipulator.  The virtual 

simulations allow validating the actual algorithms for teleoperation developed in C++ and 

the QNX RTOS.  The capability of matching the homogeneous transformations resulting 

from the kinematics analysis and the transformations programmed in VRML scripts 

permits to experiment and develop more efficient interfaces and communication 

techniques.  The implementation as well as the debugging processes of the different 

control algorithms and the required numerical approximation methods, both closed-form 

and resolved-rate, are greatly facilitated due the built-in linear algebra scripts available in 

MatLab and the visualization facilities available in the Virtual Reality Toolbox. 
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Chapter 9 

Results and Discussion 

9.1 Introduction 

To evaluate the assistance enabled by the system to guide the user‟s motion, the 

proposed model was tested in eight different modes of operation. These modes consisted 

of regular, scaled and virtual fixtures using position based and velocity based control, 

autonomous mode, and force-based virtual fixture (for a total of 8), as described in 

Chapter 7.  Each of these modes of operation comprised five repetitions of each 

experiment, for a total of forty (40) experiments. Three users executed these experiments 

for a total of 120 experimental data sets.  

This Chapter presents the results of these experiments.  Results and discussions of 

the virtual reality simulation are also presented in this chapter. 

 

9.2 Interactive Simulations Results 

 The experiments were conducted based on the methodology presented in section 

7.2.  In all these experiments, when position-based control is activated, the user 

teleoperates the Phantom Omni interface to move the PUMA to the desired position and 

orientation.  For instance, in order to select a target object using the laser pointer, the user 

will move the Omni tip to a configuration so that the PUMA end-effector points to the 

target object.  On the other hand, when velocity-based control is activated, the Phantom 

Omni interface position determines the Puma end-effector speed and direction.  In other 
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words, when velocity control is used, the Puma end-effector speed changes 

proportionally to the Phantom Omni interface changing position.  When the specified 

velocity is reached, it is maintained until the command from the Omni is changed.  Under 

velocity control mode, the user will move the Omni‟s end-effector once to select a 

direction and speed for the Puma end-effector.  Then, the user will hold the Omni‟s end-

effector steady until the gripper mounted on the Puma is close to the target object, then 

move the Omni‟s end-effector to the center in order to stop close the target. The 

definitions of these experiments are described as follows: 

a) Regular Teleoperation Mode: the user does not receive any assistance from the 

sensor-based assist system.  

b)  Scaled Teleoperation Mode: the user input is scaled 3x when it is along the 

trajectory generated by the laser, and 0.2X when it is perpendicular to the 

trajectory. 

c) Virtual Fixture Teleoperation Mode: all positions and orientations coming from 

the user input are locked except the position parallel to the trajectory, which is 

scaled to 3X. 

d) Autonomous Mode: the user points the laser in the direction of the target object 

and commands the Puma manipulator to follow the trajectory. 

e) Force-based Virtual Fixture Mode: a “stick” force effect is used for maintaining 

the user moving along the straight line trajectory defined by the “line of sight” 

using the laser range finder.    
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 Table 9.1 shows collected data of the time to complete the pick-up-a-cup task for 

ten repetitions using autonomous, regular, scaled and virtual fixtures using position based 

and velocity based control, and force-based virtual fixture teleoperation modes.  The 

variables are defined as follows: 

1. C1 = autonomous control mode 

2. C2 = position-based regular teleoperation mode 

3. C3 = position-based scaled teleoperation mode 

4. C4 = position-based virtual fixture constraint 

5. C5 = velocity-based regular teleoperation 

6. C6 = velocity-based scaled teleoperation 

7. C7 = velocity-based virtual fixture constraint 

8. C8 = force-based virtual fixture constraint 

 

Table 9.1 Completion Time (in seconds) for the Pick-up-a-cup Task 

Experiment 

No. 

C1 C2 C3 C4 C5 C6 C7 C8 

1 86.549 82.058 69.243 74.322 71.230 82.288 78.382 80.949 

2 86.214 88.105 102.300 92.718 80.681 79.143 79.990 66.764 

3 98.342 87.114 95.975 79.582 70.778 81.129 80.849 68.850 

4 85.255 92.069 69.630 86.085 74.315 88.941 76.833 79.776 

5 94.995 77.443 71.129 53.457 63.775 71.469 64.575 68.552 

6 68.592 86.214 109.892 78.522 76.064 84.615 84.835 78.213 

7 73.647 88.105 90.282 96.207 93.846 77.063 74.046 84.389 

8 65.670 94.862 91.182 98.683 76.953 83.948 82.158 77.473 

9 67.654 109.590 89.762 101.060 60.270 78.322 64.525 94.596 

10 65.097 88.848 84.878 80.340 62.398 67.932 71.958 79.910 
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Table 9.2 Completion Time Descriptive Statistics 

Variable N N* Mean SE 

Mean 

Std. 

Dev. 

Minimum Q1 Median Q3 Maximum 

C1 10 0 79.20 3.96 12.54 65.10 67.16 79.45 88.66 98.34 

C2 10 0 89.44 2.71 8.57 77.44 85.18 88.10 92.77 109.59 

C3 10 0 87.43 4.40 13.93 69.24 70.75 90.02 97.56 109.89 

C4 10 0 84.10 4.50 14.24 53.46 77.47 83.21 96.83 101.06 

C5 10 0 73.03 3.14 9.93 60.27 63.43 72.77 77.89 93.85 

C6 10 0 79.49 1.98 6.25 67.93 75.66 80.14 84.12 88.94 

C7 10 0 75.82 2.22 7.02 64.53 70.11 77.61 81.18 84.84 

C8 10 0 77.95      2.65    8.38     66.76   68.78 78.99   81.81     94.60 

 

Data from Table 9.2 were used to verify if the average time to complete the pick-

up-a-cup task can be used as predictive parameter. For this purpose, a “boxplot” type of 

chart was used.  The “boxplot” is a standard graphical tool used in descriptive statistics, 

to show the variability of a set of input variables without assuming any probability 

distribution of the underlying data [71].   

The boxplot in Figure 9.1 shows that the time parameter will be a poor parameter 

if it is used as the only prediction parameter to identify which of the methods of control 

used to execute the task would perform better for this task.  Also shown in Figure 9.1, is 

that the variability in the completion time of the pick-up-a-cup task is too large when 

comparing the different modes described as C1 to C8.  Therefore, a different method of 

evaluation of results must be used to better explain the performance of the sensor-based 

assistive system.  
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Figure 9.1 Boxplot of Autonomous (C1), Position-based Regular Teleoperation (C2), 

Position-based Scaled Teleoperation (C3), Position-based Virtual Fixture (C4), Velocity-

Based Regular Teleoperation (C5), Velocity-Based Scaled Teleoperation (C6), Velocity-

Based Virtual Fixture (C7), Force-based Virtual Fixture (C8) 

 

In section 7.5 a definition of performance indicators was presented. By using 

these indicators, eight combinations of the operation modes can be defined.  Each mode 

of operation was compared, and the associated Absolute Position Error (APE) and the 

Absolute Orientation Error (AOE) were plotted for one repetition of the experiment of 

the pick-up-a-cup task. 

A qualitative assessment of results when the performance indicators were used is 

shown in Figures 9.2 to 9.20 for position-based control and Figures 9.21 to 9.39 for 

velocity-based control. The figures show the comparison between each of the four modes 

and the corresponding Absolute Position and Orientation Errors. From this qualitative 

(*) is an outlayer point 
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comparison of the absolute errors in position and orientation, it is recognized that 1) 

scaling and virtual fixture teleoperation modes perform better than regular teleoperation 

and 2) autonomous mode performs better than regular, scaled, and virtual fixture either in 

position-based or velocity-based control forms. These are expected results from an 

assistive system where the user‟s motion is guided during the task execution. 

 

9.2.1  Position-Based Control Interactive Simulations Results 

The position-based teleoperation is the default control mode of the telerobotic 

system.  In this case, the Phantom Omni is moved in its workspace by the user and 

transformation matrices are computed by solving the forward kinematics problem.  The 

resulting transformations and then mapped to the PUMA base frame following the 

procedure discussed in section 4.2.2.  

Although the same task was performed using different modes of operation, when 

Regular teleoperation mode was used, the trajectory was not as smooth and fast as it was 

in the case of Autonomous, Scaled and Virtual Fixture modes (Figures 9.2 to 9.4).  Also, 

the trajectory is longer in Regular mode. Nevertheless, the trajectory in the Autonomous 

compared to Virtual Fixture mode and also in the Scaled compared to Virtual Fixture, is 

similar (Figures 9.5 and 9.7). When comparing Autonomous to Scaled, the trajectory is 

shorter and smoother for the Autonomous mode (Figures 9.6). This latter is mostly due to 

the fact that in Autonomous mode the input from the user is partly removed and only 

used for re-orienting the end-effector of the manipulator. These same results were 

obtained when comparing the Absolute Position Error (Figures 9.8 to 9.13).  
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As for the Absolute Orientation Error, the errors in the Regular mode for the 

complete task are mostly higher than the Autonomous, Scaled and Virtual Fixture 

(Figures 9.14 to 9.16).  In the Autonomous and Virtual Fixture modes, some portions of 

the errors are constant (Figures 9.16 to 9.20).   The explanation for this behavior is that 

those portions represent the sections of the trajectory where the orientation of the end 

effector of the Puma manipulator remains unchanged.  
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 Figure 9.2 Position-Based Regular Teleoperation vs. Scaled Teleoperation 
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Figure 9.3 Position-Based Regular Teleoperation vs. Autonomous Control 
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Figure 9.4 Position-Based Regular Teleoperation vs. Virtual Fixture Teleoperation 
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Figure 9.5 Position-Based Virtual Fixture Teleoperation vs. Autonomous Control 
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Figure 9.6 Position-Based Scaled Teleoperation vs. Autonomous Control 
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Figure 9.7 Position-Based Scaled Teleoperation vs. Virtual Fixture Teleoperation 
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Figure 9.8 Absolute Position Error in Position-Based Regular vs. Scaled Teleoperation 
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Figure 9.9 Absolute Position Error in Position-Based Regular Teleoperation vs. 

Autonomous Control 
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Figure 9.10 Absolute Position Error in Position-Based Regular vs. Virtual Fixture 

Teleoperation 
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Figure 9.11 Absolute Position Error in Position-Based Virtual Fixture Teleoperation vs. 

Autonomous Control 
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Figure 9.12 Absolute Position Error in Position-Based Scaled Teleoperation vs. 

Autonomous Control 
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Figure 9.13 Absolute Position Error in Position-Based Scaled vs. Virtual Fixture 

Teleoperation 
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Figure 9.14 Absolute Orientation Error in Position-Based Regular vs. Scaled 

Teleoperation 
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Figure 9.15 Absolute Orientation Error in Position-Based Scaled-Teleoperation vs. 

Autonomous Control 
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Figure 9.16 Absolute Orientation Error in Position-Based Regular Teleoperation vs. 

Autonomous Control 
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Figure 9.17 Absolute Orientation Error in Position-Based Regular vs. Virtual Fixture 

Teleoperation 
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Figure 9.18 Absolute Orientation Error in Position-Based Virtual Fixture Teleoperation 

vs. Autonomous Control 
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Figure 9.19 Absolute Orientation Error in Position-Based Scaled Teleoperation vs. 

Autonomous Control 
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Figure 9.20 Absolute Orientation Error in Position-Based Scaled vs. Virtual Fixture 

Teleoperation 
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9.2.2  Velocity-Based Control Interactive Simulations Results 

In this mode of teleoperation, the PUMA end-effector speed changes 

proportionally to the Phantom Omni changing position.  The user will move the Omni‟s 

end-effector once to select a direction and speed for the PUMA end-effector.  As 

discussed in section 4.2.3, the user holds the Phantom Omni‟s end-effector steady to fix 

the speed until the gripper is in the vicinity of the target object.  Then, the user moves the 

Phantom Omni‟s end-effector back to its initial position for stopping close to the target. 

The testing results for the Velocity-Based control simulations are very similar to 

those obtained for the Position-based control simulations. Figures 9.21 to 9.23 show that 

the trajectory in Regular teleoperation mode is not as smooth, fast and shorter as it is 

Autonomous control mode and Scaled, Virtual Fixture control modes.  The trajectories in 

the Autonomous, Virtual Fixture and Scaled modes are similar (Figures 9.24 and 9.26). 

And comparing Autonomous to Scaled, the trajectory is shorter and smoother for the 

Autonomous mode (Figures 9.25). This is also the case for the Absolute Position Error 

(Figures 9.27 to 9.32).  

As for the Absolute Orientation Error, for the Velocity-Based control, the errors 

in the Regular mode for the complete task are mostly smaller than for the Autonomous, 

Scaled and Virtual Fixture (Figures 9.33 to 9.35).   Similarly, the orientation errors for 

the Virtual Fixture and Scaled modes are smaller than for the Autonomous (Figures 9.36 

to 9.39).   This can be explained by the condition imposed in the velocity control mode 

for which a particular Omni end-effector position does not have to remain mapped to a 

specific configuration of the slave, but only to the magnitude and direction of the slave of 
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the end-effector velocity.  This means that there is no need to precisely reorient the 

gripper for grasping when the velocity control mode is active. 
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Figure 9.21 Velocity-Based Regular Teleoperation vs. Scaled Teleoperation 
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Figure 9.22 Velocity-Based Regular Teleoperation vs. Autonomous Control 
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Figure 9.23 Velocity-Based Regular Teleoperation vs. Virtual Fixture Teleoperation 
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Figure 9.24 Velocity-Based Virtual Fixture Teleoperation vs. Autonomous Control 
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Figure 9.25 Velocity-Based Scaled Teleoperation vs. Autonomous Control 
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Figure 9.26 Velocity-Based Scaled Teleoperation vs. Virtual Fixture Teleoperation 
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Figure 9.27 Absolute Position Error in Velocity-Based Regular vs. Scaled Teleoperation 
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Figure 9.28 Absolute Position Error in Velocity-Based Regular Teleoperation vs. 

Autonomous Control 
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Figure 9.29 Absolute Position Error in Velocity-Based Regular vs. Virtual Fixture 

Teleoperation 
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 Figure 9.30 Absolute Position Error in Velocity-Based Virtual Fixture Teleoperation vs. 

Autonomous Control 

 

 

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time, (sec)

A
b
s
o
lu

te
 P

o
s
it
io

n
 E

rr
o
r,

 A
P

E
, 

(m
)

Velocity-based Control Mode

Scaled Teleop.

Autonomous

 

Figure 9.31 Absolute Position Error in Velocity-Based Scaled Teleoperation vs. 

Autonomous Control 
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Figure 9.32 Absolute Position Error in Velocity-Based Scaled vs. Virtual Fixture 

Teleoperation 
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Figure 9.33 Absolute Orientation Error in Velocity-Based Regular vs. Scaled 

Teleoperation 
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Figure 9.34 Absolute Orientation Error in Velocity-Based Scaled-Teleoperation vs. 

Autonomous Control 
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Figure 9.35 Absolute Orientation Error in Velocity-Based Regular Teleoperation vs. 

Autonomous Control 
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Figure 9.36 Absolute Orientation Error in Velocity-Based Regular vs. Virtual Fixture 

Teleoperation 
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Figure 9.37 Absolute Orientation Error in Velocity-Based Virtual Fixture Teleoperation 

vs. Autonomous Control 
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Figure 9.38 Absolute Orientation Error in Velocity-Based Scaled Teleoperation vs. 

Autonomous Control 
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Figure 9.39 Absolute Orientation Error in Velocity-Based Scaled vs. Virtual Fixture 

Teleoperation 
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 The effectiveness of the assistive system during the execution of the pick-up-a-

cup task presented in Figures 9.2 to 9.39 is summarized in Figures 9.40 to 9.45.  The 

testing of force based virtual fixture is included in these figures as an additional 

parameter of comparison between the different modes of teleoperation. 

A comparison of the APE and the AOE indicators for the force-based and position-based, 

regular (teleoperation without assistance) and scaled teleoperation modes is shown in 

Figures 9.40 and 9.41.  The APE and AOE comparisons corresponding to Regular 

(Teleoperation without Assistance), Position-based Scaled Teleoperation (Motion-based 

Scaling), Position-based Virtual Fixture (Motion-based Virtual Fixture) and Force-based 

Virtual Fixture are depicted in Figures 9.42 and 9.43.   

Figures 9.44 and 9.45 show the APE and AOE indicators for Autonomous, 

Velocity-Based Scaling, Velocity-Based Virtual Fixture and Force-based Virtual Fixture.  

As can be observed, Autonomous mode performs better than any other method, as shown 

in previous figures.  The assistance provided in the form of scaled and virtual fixture is 

shown to be better than regular teleoperation (without assistance), as expected.  The 

force-based virtual fixture is more effective in assisting the user‟s motion along the 

straight line trajectory when compared to motion-based virtual fixture. 
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Figure 9.40 APE for Force, Position-Based Regular and Scaled Teleoperation 
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Figure 9.41 AOE for Force, Position-Based Regular and Scaled Teleoperation 
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Figure 9.42 APE for Teleoperation without Assistance, Motion-based Scaling, Motion-

based Virtual Fixture and Force-based Virtual Fixture 
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Figure 9.43 AOE for Teleoperation without Assistance, Motion-based Scaling, Motion-

based Virtual Fixture and Force-based Virtual Fixture 
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Figure 9.44 APE for Autonomous, Velocity-Based Scaling, Velocity-Based Virtual 

Fixture and Force-based Virtual Fixture 
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Figure 9.45 AOE for Autonomous, Velocity-Based Scaling, Velocity-Based Virtual 

Fixture and Force-based Virtual Fixture 
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9.3 Virtual Reality Simulation Results 

The implemented multithreaded approach was also tested using Virtual Reality 

(VR) model of the PUMA manipulator.  The software-based controller of the robot arm 

was interfaced to the real Phantom Omni hardware controller using the socket 

programming technique explained in section 7.  Figure 9.40 shows the Cartesian 

coordinates of the PUMA‟s end-effector and the Phantom Omni‟s end-effector.  As 

shown, the implemented multithreaded design allowed the execution of the telerobotic 

without event mismatch.  However, the communication between the Phantom Omni 

hardware controller and the software-based controller was unstable and it stopped 

responding abruptly.  The problem with that is the unpredictability and unreliability of 

the third-party MatLab socket API used to integrate the C++ implementation of .  For the 

case shown in Figure 9.40, the PUMA‟s end-effector follows the position in Cartesian 

space are negligible, and for plotting purposes, an offset of 10.0 mm in each direction 

was introduced so that the traces are distinguishable from one another.  This shows that 

the multi-threaded implementation allows the associated tasks for controlling the 

telerobotic system to be executed concurrently without delays, increasing the overall 

performance.    
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Figure 9.46 Position Results of Circular Path in Cartesian Space 

 

 

Figures 9.47 and 9.48 illustrate the planar (X,Y) components of the trajectory using 

datasets from the circular path corresponding to the robot arm and the haptic plotted 

individually versus time in Figure 9.46. 

 

Figure 9.47 Robot Position Tracking of the Circular Path in the X-Y Plane. 
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Figure 9.48 Haptic Position Tracking of the Circular Path in the X-Y Plane 

 

 

For testing the sensor-based assist force (SAF's), the "haptic tip" was made to 

follow a linear trajectory generated between the Puma end-effector and a target. As 

mentioned previously, this trajectory is generated from the information gathered by the 

camera and the laser. The virtual environment that consisted of a simulated target and an 

end-effector along with a linear trajectory was available for the user to view on the PC 

that runs the Phantom Omni. A graph of forces that the user experiences while deviating 

from the trajectory versus time is shown in the Figure 9.49.  
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Figure 9.49 Typical Assistive Force Feedback Experienced by the User 

 

 

 It can be observed from this graph that the user begins to deviate from the target 

at the 12.0 second mark. As this happens the feedback forces increase trying to put the 

user back on the trajectory. At around 12.7 second mark the user experiences the 

maximum force as the user has deviated maximum from the trajectory. This way the user 

is given force assistance to move along the trajectory. It should be also noted that the user 

experiences the forces only if the user is at a certain radius near the trajectory. The user 

experiences maximum forces at the outer periphery of the circle defined by the radius and 

fails to experience any forces once the user leaves the periphery.  The response of the 
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system is real time i.e., the user experiences the forces as soon as the user tries to move 

away from the trajectory. This real time response has been possible because of the 

multithreading strategies described previously.  Using traditional signal processing 

techniques, it was found that the short period deviations (“spikes”) shown in Figure 9.50 

correspond to frequencies between 5.0 to 10.0 Hz.  This figure also shows a simple 

moving average filter used to remove those “noisy” signals.  A second order Butterworth 

filter was also implemented for this purpose with acceptable results which are not 

included in this document. 
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Figure 9.50 Typical Results of the Moving Average Filter Implementation 
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9.4 Summary 

The results of the interactive or physical simulations for the pick-up-a cup task 

were presented and the performances for autonomous control mode, force and motion-

based virtual fixtures, and scaled teleoperation modes of assistance were compared.  The 

performance measures as shown in Figures 9.2 to 9.20 clearly indicate that the 

autonomous, scaled and virtual fixture teleoperation modes enable appropriate assistance 

to guide the user‟s motion during the execution of the pick-up-a-cup task.  The 

experiments conducted to validate the control strategies with the actual hardware show 

that the errors in both position and orientation are acceptable.  The results of the 

experiments with the Puma 560, the Phantom Omni and the sensory suite (camera and a 

laser range finder) for trajectory tracking as well as the force assistance for guiding the 

user's motion were satisfactory.  It was found that the variability shown by the boxplot 

indicates that the completion time is not a sufficient parameter for comparison of the 

autonomous and teleoperation modes. The performance measures also indicate that the 

real-time performance of robotic system provides adequate assistance for trajectory 

tracking, the manipulation of objects and completion of the pick-up-a-cup task.  The 

experiments conducted to validate the control strategies with the actual hardware show 

that the errors in both position and orientation are acceptable. The results of the 

experiments with the PUMA 560, the Phantom Omni and the sensory suite (camera and a 

laser range finder) for trajectory tracking for guiding the user's motion were satisfactory.  

It is shown that the system provides the sensor-based assistance to guide the user‟s 

motion. 
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Chapter 10 

Conclusions and Recommendations 

10.1 Overview 

 A PC-based multithreaded, hard real-time controller for a sensor-assisted 

telerobotic system was developed.   The implemented assistive force feedback system 

used simple sensors such as a laser range finder to guide the user's motion and a CCD 

camera for visual feedback. The user gets visual as well as haptic feedback on the remote 

PC that has Phantom Omni as the master. It was shown that the force feedback provided 

by the telerobotic controller and the sensors is consistent and in real-time, even though 

the computational resources used for the implementation were purposely limited to 

support a wide range of users.  In order to coordinate the parallel execution of the 

telerobotic tasks to run in real-time, a multithreaded architecture was developed.  This 

approach allowed the telerobotic control of the arm, sensory integration, and the 

computations of the different forms of assistance without incurring in high costs, 

increased complexity and scalability problems associated with multiprocessor 

workstation systems.   

 The control strategy described in this dissertation used sensory signals for regular, 

scaled and virtual fixtures using position based and velocity based control, autonomous 

mode, and force-based virtual fixture teleoperation during user interactions.  The user 

was enabled to switch between autonomous control mode, force and motion-based virtual 
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fixtures, and scaled teleoperation modes.  Several experiments were conducted to validate 

the trajectory following capabilities of the telerobotic system as well as the sensor-based 

assistance to guide the user's motion.  A virtual environment for object manipulation was 

provided to the user in the form of a virtual cube, and a sphere was displayed as a visual 

cue of the position and orientation of the tip of the haptic device.  In addition to the 

virtual environment, three (3) graphical views presented the sensory information to the 

user for enhanced visual perception of the object's location relative to the end-effector of 

the robot manipulator.   

 A testbed was created for conducting both simulated and physical experiments.  

The simulation was developed using a virtual reality model of the Puma 560 arm in 

MatLab and the Virtual Reality Toolbox.  The C++ programming software was 

developed to interface the Phantom Omni software and the virtual reality simulations.  

For the physical experiments, the Phantom Omni Haptic device from SensAble 

Technologies is used as the master.  It runs on a Pentium computer, with 1GHz single 

processing unit.  The Phantom Omni device uses the OpenHaptics software which runs 

on Windows XP OS.  The robot arm was equipped with a CCD camera and a Sick DT60 

laser range finder.  A Pentium II-666 MHz single processor computer was used to run the 

QNX Real-time Operating System. The Puma 560 software-based control strategy is a 

form of a PD plus gravitational compensation controller.  The testing procedures of the 

supervisory control scheme included circular, polynomial, Bezier curves, and linear 

trajectories with force feedback along the Cartesian axes (X, Y, Z) as the user deviates 

from any of those trajectories.  During those interactions, the virtual environment 

described previously as well as the camera views were displayed simultaneously on the 
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screen for visualization of the telerobotic environment.  The control system architecture 

designed to satisfy the real-time constraint consists of the following main threads: 

1. The determination of the target position and orientation with respect to the Puma 

end-effector (in joint or Cartesian space) and mapping this position and 

orientation to the Phantom Omni tip.  

2. A trajectory generation thread which computes intermediate points of the 

trajectory to reach the target. 

3. The computation of the joint angles of the PUMA for trajectory-following using 

inverse kinematics based on the resolved-rate algorithm. 

4. The computation of the torques using a proportional-derivative (PD) controller 

with gravity compensation which was required to drive the motors in the PUMA. 

5. The sensor information from the camera and the laser was fused to determine the 

position and orientation of the target with respect to the PUMA‟s end-effector and 

this data was sent to the Phantom Omni for further processing. 

6. The communication thread handles the position and orientation information of the 

Phantom Omni‟s end-effector.  This information was used by the PUMA software 

controller for position-based and velocity-based teleoperation modes. 

 

Also the processor that handles the Phantom Omni device has the following threads: 

1 The graphics thread: It renders a virtual target, end-effector position and a 

trajectory on the user screen that is similar to the PUMA environment at a refresh 

rate that conforms to the PUMA and Phantom end-effector movement. 
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2 The haptic thread: This thread computes the feedback forces based on the sensory 

information about the trajectory of the PUMA and the users‟ movement of the 

Phantom Omni. As the user deviates from the trajectory, the assistive forces 

required to bring the user back on the trajectory were calculated and delivered to 

the user using the OpenHaptics software and the actuators of the Phantom Omni 

interface. 

3 The communication thread handles the packets containing the Cartesian position 

and the Euler‟s angles sent to the Phantom Omni application from the PUMA 

software controller. 

 

10.2 General Discussion 

The integration of haptic feedback and the generation assistance based on sensory 

information is a challenge due to the strict timing constraints for a realistic sensation of 

touch and high update rates of the sensory inputs.  Additionally, the combination of 

visual and haptic information depends on computationally intensive pre-processing to 

obtain the digital features from the images.  In this dissertation a multithreaded 

architecture was designed and implemented to deal with the timing constraints and high 

update rates imposed by separating the computational tasks into different running threads 

with synchronization mechanisms for inter-processing communication to achieve real-

time performance. The following is a list of the major contributions made in this 

dissertation: 

1. A multithreaded PC-based control scheme capable of real-time haptic and 

visual feedback 
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2. Implementation of sensor-based assist functions (SAF's) for guiding the user's 

motion in the form of scaling, motion-based and force-based virtual fixture 

3. The development of an automatic control mode to enhance the manipulation 

capabilities of the users and for reducing the possibility of fatigue over long 

periods of times 

4. The integration of a laser-range finder for the determination of the desired 

trajectory by pointing the laser to the object of interest 

5. An integrated approach for handling diverse sensor datasets and data 

acquisition 

 

10.3 Recommendations 

 It is recommended to improve the computer vision sub-system to include more 

sophisticated feature extraction algorithms and object recognition techniques.  The 

experimental tests were performed successfully for a single object in the field of view of 

the camera and laser range finder and the computation of the centroid of the object of 

interest, however, it is recommended to include "blobs" detection capabilities in order to 

detect and to label multiple objects in the field of view of the camera, and then, use 

probabilistic techniques for object recognition.  Some geometrical features such as the 

centroid, area, perimeter, and roundness of the detected objects can be compared with 

existing geometrical features enumerated in a database for this purpose.  This would add 

flexibility to the trajectory generation in the presence of multiple objects as well as to the 

autonomous mode control of the telerobotic system.  Also, another recommendation is to 

enable the laser-tracking of moving objects by using the current capabilities of the system 
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for image processing and data fusion of the sensory information from the camera, laser 

range finder, and encoder readings.  The multithreaded approach used proved to support 

high update rates of the sensory data which are fundamental for the tracking of moving 

objects.  

 It is also recommended to extend the sensor-based assist force (SAF's) concepts to 

include torque feedback.  This requires force feedback in six degrees of freedom.  In the 

current implementation, the SAF's are 3-DoF output and, therefore, the assistance 

provided corresponds to force components along the Cartesian axes.  However, for 

enhanced manipulation in 3D space, assisting or resisting torques may also be useful for 

certain tasks.  In the hardware side, the Phantom Omni will need to be replaced by a 6-

DoF haptic interface capable of reflecting torques.  Commonly ADL tasks requiring 

user‟s actions such as “turn”, “push”, “insert” can also be enhanced by a 6-DoF force-

based virtual fixture teleoperation mode. 
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Chapter 11 

Future Work 

11.1 Introduction 

As previously discussed, the methods developed in this dissertation allowed the 

execution of telerobotic manipulation tasks by the combination of visual information 

using simple sensors and haptic force feedback to calculate assistive functions in real-

time.  In the current version of the telerobotic control system, the calculation of the 

assistive force for guiding the user's motion and the determination of the position and 

orientation of an object of interest as "seen" by the sensors (eye-in-hand camera and laser 

range finder) is based on a fixed reference frame located at the Puma 560 base.  Having 

this system controlling a robot on a mobile platform with sensor-based assist functions 

such as the Wheelchair Mounted Robotic Arm (WMRA) may increase the flexibility of 

such system as an assistive device.  This chapter describes potential research problems 

that the development of a real-time telerobotic control system with sensor-based assist 

functions for a robot-mobile platform would entail. 

 

11.2 Combined Mobility and Manipulation with Time-dependant Sensory 

 Calibration Functions in Real-time  

 The idea is to design a real-time control scheme which combines the control 

strategies required for maximizing the combined mobility and manipulation capabilities 

as implemented in [72], and, at the same time, implement the time-dependent sensory 
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calibration functions required to calculate the sensor-based assist functions (SAF's) as 

described in this dissertation.  The integration of a real-time telerobotic control system 

with sensor-based assist functions and the "Wheelchair Mounted Robotic Arm", WMRA, 

entails the implementation of optimized numerical approaches to deal with the 

redundancy of the WMRA system as well as the online calibration functions to determine 

the feedback force to guide the user's motion based on the sensor readings.  Such 

development would benefit users who are vision-impaired and also forced to use a 

wheelchair. 

 

11.3 Autonomous Navigation 

 The implementation of navigational technologies with advanced perception 

through the use of sensor fusion, autonomy and learning techniques might benefit from 

the development of a Hybrid-Deliberative Architecture (HDA).  HDA techniques might 

provide a suitable solution when the environment can not be altered to accommodate the 

robot‟s needs.  Behavior-based robotics and Neuro-Fuzzy techniques for inference and 

learning might be combined.  In this scenario, Neural Networks (NN) might be extended 

to automatically extract fuzzy rules from sensory information (or numerical data) while 

Fuzzy Logic (FL) techniques might be used to resolve conflicts and control of primitive 

behaviors.  Hybrid-Deliberative systems and methods are not commonplace and 

correspond to efforts of current research.  Such implementation will require highly 

responsive and stable computer and software architectures.  The multithreading 

framework developed for this work has the capabilities to perform in real-time and 

implements a high-level communication protocol to deal with different sensory input 
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formats (RS232, RS485, parallel, USB, IEEE1392, among others).  These capabilities 

could serve as the foundation of the Hybrid-Deliberative approach. 

 

11.4 Remote Assistance 

 As already implemented, the system provides force assistance based on the visual 

feedback and laser readings.  A similar setup can be implemented with the added 

capability for monitoring of the WMRA from a remote location using communication 

channels over the Internet-based protocol.  The sensory suite can be mounted at the end-

effector of the wheelchair-mounted robot arm, similar to the current version of the Puma 

560 testbed.  The present user interface will have to be modified to accommodate the 

visual information from the optical sensors and the haptic graphical display interfaces to 

be available online to the remote assistant. This way the remote human user will be able 

to observe the environment around the WMRA.  Using a haptic device as an input, the 

remote assistant can specify the desired motion to assist the disable person remotely.  

Several of the methods described in this thesis will be useful for this application. 
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Appendix A: Puma 560 Homogeneous Transformations 

 The homogeneous transformations are obtained from the substitution of the DH 

parameters in Table 3.1 into the transformation equation given by Eq. [6] yields to: 
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Appendix A (Continued) 

Multiplying (A.1) – (A.6), the homogeneous transformation matrix of the end-effector 

frame, {6}, in terms of the reference frame {0} corresponding to the base of the robot 

(See Figure 3.1) as can be now be calculated: 
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The symbolic evaluation of Eq. (A.7) can be written as: 
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where,      64654155235465423111 scccsscsssscccccr         (A.9) 

    64654165236465423121 scccsccssssccccsr      

  6523646542331 cscsscccsr         

    65464165236465423112 scsccsssscssccccr      
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Appendix B: Equivalent Single Angle-Axis Representation 

 The homogeneous transformation matrix, T, which describes a rotation around an 

arbitrary axis vector   and an angle defined as   is given by the following matrix [48]. 
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where, )sin( s , )cos( c , and )cos(1  V , and  
zyx  ,,  are the directional 

components of the rotational axis  .  The (3x3) rotation matrix is, then: 

 





































cVsVsV

sVcVsV

sVsVcV

R

zzxzyyzx

xyzyyzyx

yxzzxyxx

   (B.2) 

 

The first three elements of column fourth of T are the components of the position vector, 

P: 
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A linear trajectory in Cartesian space can now be generated between two points 

defined by their corresponding homogenous transformation matrices, 1T and 2T , where: 
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Appendix B (Continued) 
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If N intermediate points are desired between the initial point defined by the homogeneous 

transformation 1T and the destination position defined by 2T , the linear components can be 

found as: 
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For the rotational components, the following calculations are required.  Notice that the 

transform is used instead of the inverse because the rotation matrix is orthogonal: 
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Before proceeding, it is convenient to ensure that the elements of the resulting 

matrix define an orthogonal matrix.  This is accomplished by the cross product and taking 

any two columns as follows: 

3122322113 rrrrr   3112321123 rrrrr   2112221133 rrrrr    (B.8) 
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Appendix B (Continued) 

Now, the equivalent single rotation angle  can be found from the ijr elements of the 

rotation matrix given by Eq. (B.7) and (B.8), as follows: 
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Using the equivalent angle, the directional components of the single axis 

 
zyx  ,,  can now be found using the following set of equations.  Notice that these 

equations include provisions to avoid the representational singularities (i.e. the axis is 

poorly defined) arising from situations where the angle of rotation is very small (defined 

by a tolerance, Toler), or 180°.  The following equations are evaluated: 
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Appendix B (Continued) 

In Eq. B.12, the following substitutions are needed to ensure the most positive 

components of are  zyx aon ,,  used: 
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Now, a rotation matrix can be obtained for every intermediate point by dividing the 

equivalent rotation angle  into (N-1) equally spaced values by substitution of the 

corresponding components  
zyx  ,,  of the single axis rotation, Eq. B.10 to B.12, and 

the evaluation of the conditions to avoid representational singularities in B.12a to B.12c.  

This procedure will allow having well-defined intermediate transformations between the 

initial and the goal (destination) transformations. 
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Appendix C: MatLab Script for the Symbolic Jacobian Matrix 

 
function Jac = symJacobn() 

%symJacobn calculates the symbolic form of the Jacobian of the manipulator 

%with respect to the end-effector frame. 

puma560akb; 

syms th1 th2 th3 th4 th5 th6 real;  

syms th2d th3d th4d th5d th6d real; 
syms a3 a4 d2 d3 d4 real; 

th=sym('[th1; th2; th3; th4; th5; th6]'); 

 

%Symbolic values: 

DH=[ 0 0   th(1) 0;  -pi/2  0  th(2) d2;0 a3  th(3) d3; pi/2 a4  th(4) d4;  -pi/2  0 th(5) 0; pi/2   0   th(6) 0]; 

U=sym('[1 0 0 0;0 1 0 0;0 0 1 0; 0 0 0 1]'); 

 

for i=6:-1:1 

    dx = [-U(1,1)*U(2,4)+U(2,1)*U(1,4);  

          -U(1,2)*U(2,4)+U(2,2)*U(1,4); 

          -U(1,3)*U(2,4)+U(2,3)*U(1,4)]; 

         
    delt = [U(3,1); U(3,2); U(3,3)]; 

    

    Jac(1,i) = dx(1); 

 Jac(2,i) = dx(2); 

 Jac(3,i) = dx(3); 

 Jac(4,i) = delt(1); 

 Jac(5,i) = delt(2); 

 Jac(6,i) = delt(3); 

     

    TT=rotx(DH(i,1))*transl(DH(i,2),0,0)*rotz(DH(i,3))*transl(0,0,DH(i,4)); 

    U = TT*U; 
end 

 

%The Solution using symbolic approach is: 

% ans = 

%     0.4995    0.2394    0.3162         0         0            0 

%    -0.4457    0.3319    0.2813         0         0            0 

%    -0.0303   -0.5160   -0.0941         0         0           0 

%     0.4504   -0.6164   -0.6164    0.3309   -0.0479   0 

%     0.5524    0.7607    0.7607    0.0159    0.9989    0 

%    -0.7014    0.2034    0.2034    0.9435         0    1.0000 

 
% Solution using Corke's toolbox 

% jacobn(p560m,qready) 

% ans = 

%     0.4995    0.2394    0.3162          0         0           0 

%    -0.4457    0.3319    0.2813          0         0           0 

%    -0.0303   -0.5160   -0.0941         0         0            0 

%     0.4504   -0.6164   -0.6164    0.3309   -0.0479    0 

%     0.5524    0.7607    0.7607    0.0159    0.9989     0 

%    -0.7014    0.2034    0.2034    0.9435    0.0000    1.0000 
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Appendix D: Singularity-Robust (SR) Inverse 

 The SR inverse [16] is also known as damped pseudoinverse [18]. Considering a 

linear system of equations as the form: 

    bxA        (D.1) 

 If the matrix of coefficients  A  is not square, the pseudoinverse A
+
 may be used 

to compute the least-square solution with the objective function defined as the minimal 

norm.  The pseudo-inverse solution avoids the problem of extremely large amplitude in 

the neighborhood of singular points by minimizing the sum of the norms of the error 

(defined as Axb   ) and the solution x . For an m-by-n (where m < n) matrix A, its 

pseudoinverse is computed by: 

  1  TT AAAA      (D.2) 

 The resulting matrix
A may have extremely large elements when  TAA  is nearly 

singular.  The SR inverse uses the following equation instead: 

  1* 
 IAAAA TT      (D.3) 

Where 
*A  is the SR inverse of  A , I is the identity matrix, and  is the parameter that 

determines the weighting between the norm of the solution and the error.  If a small is 

used, then the error gets small, but the solution might get large around singular points and 

vice versa [19]. 
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Appendix E: Angular Velocities Components of the End-Effector 

 The Euler‟s rotation theorem states that any rotation can be defined using three 

angles   ,, , as shown in Figure ZZ.  These angles   ,,  are called Euler angles. 

 
 

Figure E.1 Definition of the Euler Angles  

 

 In robotics it is more convenient to write the Euler‟s rotation in terms of rotation 

matrices.  For the case of the angular velocity components of the end-effector, the 

equation that describes the total rotation is     zxz RRRR )()(,,  .  The 

corresponding rotation matrices in terms of the Euler‟s angles are: 

 


















100

0)cos()sin(

0)sin()cos(





zR ,  


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












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)sin()cos(0

001


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















100

0)cos()sin(
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



zR E.1 

Now, the total rotation matrix, R, is found to be:  

   
































ccsss

sccccsscsccs

sssccscssccc

RRRR zxz )()(,,   E.2 

where )cos( c , )cos( c , )cos( c , )sin( s , )sin( s , and )sin( s .   
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Appendix E (Continued) 

In the end-effector axis, the components of the angular velocity    are obtained by 

writing the total rotation matrix as: 

   321

333231

232221

131211

RRR

rrr

rrr

rrr

R 

















  and  


















z

y

x







    (E.3) 

    zyx
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
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where z is the rotation about the z- axis by angle   and it is obtained from the total 

rotation given by Eq. (TT).  Taking the z-component as   zR 3  yields to: 






























c

sc

ss

      (E.5) 

Next, the rotation about the -axis by angle , is obtained from  given by second 

column vector of   )(zR : 





















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0

s

c

      (E.6) 

Similarly, the rotation by angle is given by the third column vector of   )(zR  as: 





















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0

0
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Appendix E (Continued) 

The end-effector angular velocity components in matrix form are: 


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
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Appendix F:  Specifications for the PHANTOM Omni Haptic Device 

 The Phantom  Omni is a haptic device model developed by SensAble 

Technologies.  It offers six (6) positional DoF as input and three (3) forces DoF output.  

The specifications for this device are shown in Table F.1 

 

Table F.1  Specifications for the Omni Haptic Device 

Model The PHANTOM Omni Device 

Force feedback workspace: ~6.4 W x 4.8 H x 2.8 D in 

> 160 W x 120 H x 70 D mm 

Footprint: 

Physical area the base of device 

occupies on the desk 

6 5/8 W x 8 D in 

~168 W x 203 D mm 

 

Weight (device only): 3 lb 15 oz 

Range of motion: Hand movement pivoting at wrist 

Nominal position resolution: 

 

> 450 dpi 

~ 0.055 mm 

Backdrive friction: <1 oz (0.26 N) 

Maximum exertable force at nominal 

(orthogonal arms) position: 

0.75 lbf. (3.3 N) 

Continuous exertable force (24 hrs.) > 0.2 lbf. (0.88 N) 

Stiffness: 

 

X axis > 7.3 lb/in (1.26 N/mm) 

Y axis > 13.4 lb/in (2.31 N/mm) 

Z axis > 5.9 lb/in (1.02 N/mm) 

Inertia (apparent mass at tip): ~0.101 lbm. (45 g) 

Force feedback: x, y, z (3Dof Output) 

Position sensing: 

 

[Stylus gimbal]: 

 

x, y, z (digital encoders) 

 

[Pitch, roll, yaw (± 5% linearity 

potentiometers)] 

(6Dof Input) 

Interface: IEEE-1394 FireWire® port 

Supported platforms: Intel-based PCs 

GHOST® SDK compatibility: No 

3D Touch™ SDK compatibility: Yes 

Applications: Selected Types of Haptic Research and 

The FreeForm® Concept™ system 
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Appendix G: Custom Made Sick DT60 Data Acquisition Module 

 

 The Sick DT60 is distance sensor that uses a laser diode to produce red light 

which is a reflected from the target object to generate an analogue signal proportional to 

the distance from the target. The DT60 sensor has a range of 200mm to 6m and is 

designed to be used with any target material. According to the documentation provided 

by the manufacturer, the visible red light is an eye-safe light beam, however, it is highly 

recommended to avoid direct exposure to the laser light. Power and signal connections to 

the laser are via a standard M12, 5-pin plug.  Accuracy is ±10mm with a typical 

reproducibility of around 7mm.  The output signal is a current varying from 4.0mA to 

20.0mA proportional to the measured distance.  Before Analog-to-Digital conversion 

using the 232 SDA12, a high precision resistor must be used to convert to a voltage 

signal with 0-5 VDC range (See Figure G.1). 

   

Figure G.1 Custom-made ADC Module for the DT60 Sick Laser Sensor
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